Почему летает ракета

Улетели в историю: как SpaceX Илона Маска смогла обогнать «Роскосмос» так сильно и так быстро?

  • космос
  • илон маск
  • spacex

30 мая в 22.22 по Москве Crew Dragon с двумя астронавтами на борту отправился в свой первый пилотируемый полет Этим он прервал девятилетнюю паузу в американской пилотируемой космической программе — период, когда единственный путь на орбиту для американских астронавтов лежал через Байконур. Сейчас Crew Dragon находится на пути к МКС. Разбираемся, что это значит для мировой космонавтики и России.

Чем Crew Dragon лучше «Союза»? И лучше ли?

Многие все еще не готовы принять наблюдаемую реальность и поэтому говорят: «Запуская Crew Dragon, США с трудом повторяют то же самое, что Россия и Китай делали все эти годы, отправляя на орбиту людей. Они просто запускают капсулу на станцию, а потом сажают её назад на парашюте. Что тут такого сенсационного?»

Но эта точка зрения предельно далека от истины. Чтобы понять «что тут такого», сперва следует вспомнить, что такое космический корабль Crew Dragon на самом деле — и почему это действительно революция в сравнении с «Союзам».

Прежде всего: «Союз» по объемам практически не изменился со своего первого полета, состоявшегося 53 года назад. В то время никаких крупных орбитальных станций не было, смысла в возке большего числа людей на орбиту не было тоже. Поэтому герметичный объем этого корабля 10,45 м³ , а доступный экипажу — и вовсе 6,5 м³. Причем спуск осуществляется в отделяемой спускаемой капсуле, с доступным людям объемом всего в 2,5 м³ . Поэтому туда нереально посадить больше трех человек в скафандре (0,83 кубометра на человека). И хотя технически «Союз» может летать с экипажем 17,7 суток, на практике после одного такого эксперимента никто не горит желанием его повторит. Даже когда экипаж урезали до двух человек (один человек на 1,25 кубометра), в корабле было так тесно, что нормальные тренировки космонавтов наладить не удалось, и после спуска на Землю они не смогли дойти своими ногами даже до автобуса — такой была детренировка мышц в невесомости.

Crew Dragon возвращается на Землю весь целиком, объем его герметичного жилого пространства — 9,3 м³, причем весь этот объем доступен экипажу. Поэтому туда можно посадить семь членов экипажа. И на них все равно будет приходиться 1,33 кубометра на человека — больше, чем на «Союзе». Пассажировместимость этого корабля так велика, что NASA в одиночку просто не сможет ее полностью использовать: агентство планирует отправлять лишь по четыре человека, поскольку МКС имеет ограниченный объем и поддерживать на ней слишком большой экипаж сложно, да и расходы на станцию тогда бы возросли. Тем не менее, в космосе редко бывают «излишки». Почти наверняка «лишнее» пространство со временем займут представители других стран, желающие попасть на орбиту, или космические туристы. Избыток места полезен еще в одном отношении: на борту этого корабля есть туалет, в то время как на борту «Союзов» (а равно и более ранних шаттлов ), отправление естественных надобностей было несколько более экзотичным.

Кроме того, у нового американского корабля полезная нагрузка, доставляемая на станцию, помимо астронавтов может составлять несколько центнеров. Пока она чисто теоретическая, поскольку потребности станции удовлетворяют отдельные грузовые «Драконы», но в будущем ситуация может измениться.

«Союзы» на станцию везут людей — можно добавить сотню килограмм груза, но не более. Поскольку два из трех отсеков российского корабля, создававшегося еще при Королеве, не возвращаются на Землю, груз размещать особо негде: с МКС больше 100 килограмм «Союз» не вернет. А это бывает необходимым: образцы космических экспериментов, требующие ремонта скафандры и другое имущество периодически надо возвращать на планету. Crew Dragon спокойно может возвращать с собой многие центнеры нагрузки.

Характеристики Crew Dragon очень близки к считающейся перспективной российской «Федерации», которую недавно переименовали в «Орла». Его полезный жилой объем такой же — 9,3 м³, экипаж ограничен четырьмя космонавтами, и тоже есть возможность возвращения центнеров груза с орбиты. Но при формальной близости их параметров важен один нюанс: «Орел» не совершит даже первый, беспилотный испытательный полет ранее 2023 года, а первый пилотируемый — ранее 2025 года. Crew Dragon, пилотируемый корабль SpaceX, в 2019 году уже летал на орбиту в беспилотном варианте, а весной 2020 года попал туда и с экипажем на борту. Иными словами, пока SpaceX обгоняет «Роскосмос» в создании нового космического корабля как минимум на четыре года. В реальности эта цифра может даже возрасти.

Почему SpaceX так сильно опередила «Роскосмос»?

Достижение компании Илона Маска особенно впечатляет, если вспомнить, что она основана в 2002 году, — как раз тогда «Рокосмос» отказался продать американцу две своих ракеты, потребовав слишком высокую цену. На обратном пути в самолете Маск прикинул, за сколько можно сделать ракету самому, — в теории. После этого он заявил спутникам, что вполне реально снизить цены на космические полеты в десять раз. Иными словами, Маск имел нулевой опыт конструирования ракет и космических кораблей, с нуля основал компанию, где до сих пор остается главным инженером, и несмотря на это смог построить перспективный пилотируемый космический корабль быстрее, чем «Роскосмос» — хотя последний начал разрабатывать «Федерацию» даже чуть раньше, чем SpaceX свой Crew Dragon. Может быть, дело в том, что SpaceX получила больше денег? Но внимательный анализ расходов компании не показывает и этого. Первую версию ракеты Falcon 9 и грузового космического корабля Dragon (нынешний Crew Dragon — его очень глубокая модернизация) американская компания создала всего за 0,4 миллиарда долларов. Для сравнения, на одну только ракету «Ангара» Россия потратила более 4 миллиардов долларов или в десять раз больше. Все траты SpaceX по НИОКР за всю ее историю примерно равным тратам по НИОКР на одну «Ангару».

Несмотря на это, «Ангара» пока так и не начала регулярные полеты, а вот Falcon 9 делает это уже десяток лет — да и грузовые «Драконы» летают на МКС уже восемь лет подряд.

Нельзя сказать, что дело тут в какой-то особой расточительности «Роскосмоса». Если сравнить расходы российского космического гиганта с NASA, то выяснится, что они довольно скромны. Например, американское космическое агентство потратило на разработку своей ракеты SLS и корабля Orion уже десятки миллиардов долларов — много больше, чем ушло на «Ангару» — однако ни SLS, ни Orion до полной летной готовности еще не дошли.

Похоже, Маск добился серьезного отрыва от конкурентов не за счет их слабостей, а за счет своей силы. И речь не идет о какой-то особой гениальности — идее посадки ракеты на хвост десятки лет, и в тех же США уже летали демонстраторы таких технологий. Да и проект Crew Dragon не имеет радикальных преимуществ перед проектом «Орла». Дело в другом: у SpaceX и ее руководителя несопоставимо выше мотивация.

Главная проблема российского космоса не в нехватке конструкторов, а в том, что он не имеет определенных взглядов, зачем ему вообще нужен космос. Ведь если задуматься, то для полетов на МКС новые космические корабли проектировать вовсе не надо. Да, «Союз» тесный, да, там всего три члена экипажа. Но на орбитальной станции и так меньше человек, чем она может поддерживать — так зачем же строить корабль больше, чем требуется? Сходная история и с ракетой: «Ангара» по возможностям выведения не сильно отличается от «Протона», который до недавних пор вполне надежно летал. Так зачем же дублировать его новой конструкцией?

Конечно, остается еще такая цель как полет на Луну. И Orion NASA, и «Орел» «Роскосмоса» создаются, в том числе, с учетом возможного полета туда. Но все дело в том, что планы NASA в XXI веке меняются с каждым новым президентом США. Барак Обама хотел , чтобы Агентство летело к ближайшему околоземному астероиду, Дональд Трамп хочет возврата на Луну, а что будет хотеть следующий американский президент — на сегодня не знает вообще никто. Реализовать крупную космическую программу за 4−8 лет сложно даже США.

В России речь о смене космических целей страны вроде бы не идет. Но не потому, что она преследует их с завидным постоянством, а потому, что у нас никто так и не знает, в чем они состоят. Если открыть Федеральную космическую программу , то на ближайшие годы там запланировано одно только поддержание имеющихся возможностей полета в космос. На горизонте маячат какие-то тяжелые ракеты и корабли до Луны — но из программы в программу их переносят все дальше и дальше во времени. Фактически, это скорее пиар-проекты, а не реальные намерения, с внятными сроками и планами.

От этого финансирование и «Ангары», и «Орла», и даже Orion и SLS никогда не было ровным и уверенным. А у тех, кто занимался программой, никогда не было четкого понимания, когда же они должны ее завершить и чего заказчик на самом деле хочет.

Читайте также  Почему горит сцепление

У Маска все намного проще: его мотивация к созданию новых конструкций радикально выше. Его цель — это не доставка людей на МКС или вывод спутников на орбиту, как у российской космонавтики. И даже не повторное втыкание флага в лунную поверхность, как у Дональда Трампа. Он хочет не реализации пиар-проекта — он хочет высадки на Марс. Это принципиально другая задача, огромной сложности, на пути к которой нужно решить массу попутных задач. Чтобы научиться строить ракеты и корабли, SpaceX бралась за коммерческие контакты NASA, и именно в их рамках были созданы и Crew Dragon, и Falcon 9.

Но хотя они и кажутся нам сегодня большим достижением — который «Роскосмос» с «Орлом» лишь надеется повторить через несколько лет — для самого Илона Маска это только нижние ступени лестницы, которую он твердо намерен достроить в 2020-х годах. Ее верхние ступени — Марс.

Что будет теперь с «Роскосмосом» и до каких пор будут летать «Союзы»?

Из практики совместных полетов США и России на МКС до сворачивания программы шаттлов известно, что наличие одного средства доставки туда людей не означает свертывания полетов другого. До 2011 года на один пилотируемый рейс шаттлов к орбитальной станции старались давать один рейс «Союзов». Те превосходили шаттлы в плане экономики (один полет шаттла без учета стоимости НИОКР стоил 0,5 миллиарда долларов), но, несмотря на это, от последних никто не отказывался. Это был вклад США в совместную программу эксплуатации МКС. На шаттлах туда доставляли космонавтов вместе с американцами, а на «Союзах» — астронавтов вместе с российскими коллегами.

Точно также все будет и после начала полетов Crew Dragon: снова введут смешанные экипажи, где будут вместе летать граждане России и западных стран. Кажется, что пока «Союзу» ничего не угрожает.

Но в перспективе ситуация будет куда сложнее. С 2024 года у США нет четких планов на участие в проекте МКС. Именно в этом году они нацелены на высадку на Луне, и если у них все выйдет, то чисто финансово не потянут и полеты туда, и участие в орбитальной станции. Тем более, что у NASA есть план создания окололунной орбитальной станции. Полеты туда вычерпают бюджеты Агентства, не оставив ему много средств на МКС.

Поэтому уже сейчас в США ходят разговоры о будущем выходе американского государства из этого проекта. Между тем, одна Россия поддерживать МКС вряд ли сможет: целый ряд модулей там западный, и их эксплуатация и ремонт силами «Роскосмоса» малореальны. В теории, станцию может спасти перевод на коммерческий статус — привезти туда космических туристов.

И вот тут у «Союза» начнутся объективные сложности. Он сможет доставлять не более трех человек, часть из которых должна быть космонавтами-профессионалами — чтобы реагировать на возможные нештатные ситуации. Crew Dragon может вести 7 человек, и даже если двое будут астронавтами той же SpaceX, то еще пятеро могут быть туристами. Нетрудно понять, что «Союз» начнет выглядеть непривлекательно.

Разумеется, российский «Орел», если он будет готов к тому времени, поправит ситуацию. Но есть и проблема: не вполне ясно, закончат ли его разработку. Дело в том, что к 2023 году, когда он должен достигнуть летной готовности, вполне могут начаться пилотируемые полеты Starship. Вторая его ступень совмещена с кораблем, чей герметичный объем более 850 кубометров, то есть раз в девяносто больше, чем у Crew Dragon. Пассажировместимость там намечена до 100 человек, хотя в большинстве полетов, конечно, она будет меньше. При этом стоимость полетов — за счет многоразовости — планируется равной стоимости полета нынешней ракеты с кораблем типа Crew Dragon.

На этом фоне достройка «Орла» будет выглядеть, как спуск на воду военного парусного судна в эпоху пароходов. Ресурсы «Роскосмоса» ограничены, и если он решит догонять технологический уровень Starship, «Орел» вполне могут бросить на полдороги.

Еще хуже ситуация сложится, если наша страна избежит разработки аналога Starship. По гермообъему его вторая ступень равна всей МКС. Таким образом, появление подобного левиафана в космосе в основном закроет эпоху стандартных орбитальных станций: никто не будет задорого поддерживать их в рабочем состоянии, когда каждый летящий на орбиту Starship сам будет такой станцией. Только еще и способной долететь до Луны.

Космические скорости: насколько быстро нужно лететь, чтобы покинуть Землю, планетную систему и галактику?

Несмотря на то, что отечественная космонавтика переживает не лучшие, мягко говоря, времена, космосом на сегодняшний день интересуется все больше людей разного возраста и уровня образования. Усилиями частных инвесторов и популяризаторов науки пространство за пределами нашей планеты становится все более интересным, доступным и понятным, привлекая любознательных граждан к получению новых знаний.

В этом материале мы кратко, избегая сложных пояснений и формулировок, расскажем о космических скоростях, которые необходимы для преодоления гравитационных полей астрономических объектов. В новостных сюжетах мы часто слышим такое словосочетание, как «первая (вторая, третья, четвертая) космическая скорость», однако далеко не каждый обыватель понимает о каких скоростях идет речь и как их определяют.

Что такое космическая скорость

Космическими скоростями в космонавтике (речь идет не только о пилотируемых полетах, но для удобства мы будем называть все запуски искусственных космических аппаратов космонавтикой) пользуются для расчета минимально необходимой скорости для:

1. Выхода космических аппаратов на орбиту Земли;
2. Выхода космических аппаратов за пределы гравитационного поля Земли;
3. Выхода космических аппаратов за пределы Солнечной системы;
4. Выхода космических аппаратов за пределы галактики Млечный Путь.

Естественно, формулы расчета космических скоростей применимы не только к нашей планете, но и к любому другому объекту Вселенной, однако мы рассмотрим лишь актуальные для земных космических аппаратов значения.

Первая космическая скорость — 7,9 км/сек

Чтобы вращаться на орбите Земли, спутнику необходимо иметь первую космическую или круговую скорость, которая для нашей планеты равна примерно 7,9 км/сек. В этом случае объект на орбите будет удерживать сила, называемая в народе центробежной, а движение Земли и сила притяжения не позволят спутнику покинуть гравитационное поле планеты.

Отсюда следует довольно интересное и простое умозаключение: что будет если в формуле расчета первой космической скорости (V1 = (GM/R) в степени 1/2, где M — масса объекта, R — радиус, а G — гравитационная постоянная) поиграть с цифрами и подставить данные, которые определят первую космическую скорость для выдуманного нами объекта, как равную скорости света (чуть менее 300 000 км/сек)?

Мы получим объект огромной массы и малого радиуса, на который свет может падать, но покинуть его гравитационное поле фотоны уже не в состоянии, ведь для этого нужна вторая космическая скорость, которая в данном случае будет превышать скорость света, что невозможно в известной нам Вселенной. Это есть объект, о котором слышал каждый и который астрофизики называют «черной дырой».

Вторая космическая скорость — 11,2 км/сек

В 1959 году в СССР состоялся запуск автоматической межпланетной станции Луна-1 — первого искусственного объекта, покинувшего гравитационное поле Земли и ставшего спутником Солнца. Для этого аппарату пришлось разогнаться до второй космической скорости (она же скорость убегания), которая для Земли составляет порядка 11,2 км/сек. Покинув Землю на такой скорости, объект выходит на параболическую орбиту, которая при условии отсутствия других тел во Вселенной позволила бы ему бесконечно далеко удалиться от планеты.

Третья космическая скорость — 16,6 км/сек

Определить точное значение третьей космической скорости невозможно, так оно может колебаться в довольно широком диапазоне. Имеет значение угол направления запуска к траектории движения Земли по орбите и контакт с гравитационными полями других планет, которые могут как ускорять, так и притормаживать КА. Минимальное значение третьей космической скорости оценивается как 16,6 км/сек.

Четвертая космическая скорость — 400-600 км/сек

Редко употребляемый термин ввиду недосягаемости определяемых им величин для нашей космонавтики в обозримом будущем. Четвертая космическая скорость подразумевает вылет КА за пределы галактики, что в принципе невозможно при текущем и ожидаемом уровне развития технологий. Учитывая, что наша Солнечная система вращается вокруг галактического центра со скоростью около 220 км/сек, примерную расчетную скорость искусственного аппарата для вылета за пределы Млечного Пути можно определить как 400-600 км/сек.

Пожалуйста, оцените статью

Средняя оценка / 5. Количество оценок:

Оценок пока нет. Поставьте оценку первым.

Интересно, спасибо за статью)

Автор не дуркуй и ахинею не гони солнечную систему еще не один апарат не покинул хотя думали многие так а на деле увы не совсем так так что не надо лгать коли сам не чего не понимаешь и черная дыра то же ложь есть гипотезы но в последнее время и они плывут так как дебет с кредитом не сходится .

Читайте также  Почему у мужчины эрекция, когда он просто спит

А что же тогда, говорят, что Вояджер — первый, что покинуло СС

Говорят много но мало толку включи поиск (где кончаются пределы солнца) и вы там обнаружите что это около двух световых лет так что думайте сами .

вообще-то размер СС составляет около 0,0015 световых лет.

Солнечная система не ограничена орбитами планет.

Вояджер разогнали до 42 км в сек. Для этого использовали удачное расположение тяжелых планет Юпитер, Сатурн, Нептун.
Вояджер уже был хорошо разогнан до Юпитера. И + притяжение Юпитера добавило скорости. Пролетаю около Юпитера по кривой, Вояджер был подхвачен Ураном или Сатурном. Точно не помню.

Говорят что кур доят, Вояджер всего лишь покинул сферу солнечного ветра

Сфера солнечного ветра — Нобелевскую премию за это определение, мужики-то не знали)))

Всё это не только вчерашний, а позавчерашний век. Сейчас при наличии новых технологий следует идти другим путём в области космической логистики и коммуникации.
В этом вопросе надо кардинально изменить концептуальную конструктивную и композиционную основу ракеты с несколькими ступенями. Надо создать воздушную стартовую платформу (ВСП) с ядерной силовой установкой (ЯСУ) — это может быть дрон в виде тора, снабжённый несколькими ТРД, который будет поднимать до 60-100 км орбитальный модуль-ракету (ОМР), он будет находиться внутри тора, и будет стартовать с этой высоты без всяких ступеней. Как вариант ВСП может быть сделан, как тор-дирижабль с насыщением горячим воздухом, который будет создаваться за счет ЯСУ. Естественно ВСП будет встречать ОМР на высоте 60-100 км для возврата на землю. ВСП будет многоразовый, что станет гораздо дешевле одноразовых ступеней. ВСП можно использовать, и как боевой воздушный комплекс с возможностью дежурить у границ наших «партнеров».

Покинуть можно с любой скоростью, если будет постоянно работать двигатель.Это всё скорости свободного полёта, когда отключены двигатели.
А это вообще двоечник написал «В 2013 году Вояджер-1, преодолев более 18 млрд километров и набрав скорость около 17 км/сек»
не набрав 17 км/с, а потеряв до 17 км/с. Потому что в 1990 году Вояджер чесал больше 25 км/с, но постепенно замедляется притяжением Солнца.

То есть есть шанс что вояджеры вообще никуда не улетят и солнце замедлит их скорость удаления до нуля и притянет обратно?

Новое в блогах

Сообщество « ВЕЩИ СВОИМИ ИМЕНАМИ»

Российская крылатая ракета «может летать вокруг света много лет»

The Telegraph (Великобритания): российская крылатая ракета с ядерным двигателем «может летать вокруг света много лет»

Россия разрабатывает ракету с ядерной силовой установкой, которая сможет летать в атмосфере несколько лет подряд в готовности нанести удар в любой момент. Об этом поведал начальник военной разведки.

Рассказывая об угрозах для Британии, которые легли в основу правительственного Комплексного обзора внешней и оборонной политики, генерал-лейтенант Джим Хокенхалл (Jim Hockenhull) заявил, что Россия, разрабатывая новое оружие, «раздвигает границы науки и нарушает международные договоры».

Выступая с первым в истории брифингом для СМИ в разведывательном центре альянса «Пять глаз» на авиабазе Уайтон в Кембриджшире, начальник военной разведки заявил: «Москва проводит испытания крылатой ракеты глобального охвата с ядерным двигателем, способной наносить удары с неожиданных направлений».

Имея источник ядерной энергии, ракета может летать в ожидании приказа «почти бесконечно».

Издание «Телеграф» (The Telegraph) считает, что генерал Хокенхалл имел в виду ракету 9M730 «Буревестник» (кодовое обозначения НАТО — SSC-X-9 Skyfall).

В августе на военной базе вблизи поселка Ненокса на северо-западе России произошел взрыв, вызванный, согласно оценкам, как раз сбоем в работе ракеты «Буревестник». В результате аварии на 30 минут резко подскочил уровень радиации в расположенном неподалеку Северодвинске, а на месте взрыва погибли семь человек.

Начальник разведки также подчеркнул, что Россия вкладывает большие средства в строительство подводных лодок и глубоководных боевых средств, таких как «управляемый без экипажа подводный аппарат, способный доставлять ядерный боезаряд к береговым целям и даже наносить удары по авианосным группам в море». Кроме того, он может создавать угрозу подводным кабелям, о чем недавно уже писала «Телеграф».

«В совокупности данные средства позволяют русским подвергать гражданскую и военную инфраструктуру Британии и ее союзников угрозе прямого нападения с применением как обычных, так и ядерных боезарядов. Это ограничивает наши варианты действий и повышает ставки во время кризисов», — отметил генерал Хокенхалл.

Рассказывая о том, что путинские вооруженные силы не обладают тем количественным потенциалом, который существовал в годы холодной войны, шеф военной разведки подчеркнул, что Россия «поменяла количество на качество».

«Они пристально наблюдают за Западом, чтобы понять, как наилучшим образом использовать свои капиталовложения, чтобы в случае наших активных действий создать нам максимум проблем».

Крылатые ракеты с большим временем полета и глубоководные субмарины, способные устанавливать аппаратуру перехвата на подводные кабели или перерезать их, являются примером того, как небольшое количество современных боевых средств может ограничить возможности Запада в период ухудшения отношений с Кремлем.

В состав управления военной разведки Министерства обороны входит несколько тысяч военных и гражданских специалистов, в том числе из британских разведывательных ведомств. Управление работает в тесном взаимодействии с союзниками и анализирует все источники разведывательной информации, в том числе и поступающей со спутников, радиолокационных станций и от шпионов.

Начальник военной разведки отметил, что его ведомство действует везде — «в космосе, в глубине океанов, в виртуальном и когнитивном пространстве», а также стремится как можно эффективнее использовать информацию из открытых источников, в том числе, из социальных сетей.

Совершенно секретные разведывательные сведения «придают глубину, цвет и эмоции информации из открытых источников», отметил генерал Хокенхалл.

Центр на авиабазе Уайтон, расположенный в здании под названием Pathfinder (Следопыт) (в официальных документах используется аббревиатура PF), является уникальным в НАТО. Он открылся в 2012 году, и в нем работают 700 аналитиков изо всех стран, входящих в состав разведывательного альянса «Пять глаз». Это — Британия, США, Канада, Австралия и Новая Зеландия.

Один американский офицер связи рассказал «Телеграф» о том, что большим преимуществом центра является объединение возможностей союзников: «Эта группа имеет такой уровень доверия, который преодолевает любые культурные различия [в обмене разведывательными данными]».

По словам генерала Хокенхалла, задача военной разведки заключается в поиске и использовании слабых мест противника. «Оборона не является страховым полисом, — сказал он. — Работа по защите страны должна вестись каждый день».

Он отметил, что порочный круг враждебных государств, жестоких экстремистских группировок и серьезной организованной преступности «вызывает особую тревогу» и преследует цель «воспользоваться нашими уязвимостями и слабыми местами».

По словам генерала, фейковые новости, марионетки противника и его военизированные формирования всячески маскируемой принадлежности «стирают грань между внутренними и внешними угрозами, проводить которую сегодня уже нецелесообразно».

Вторя словам министра обороны, генерал Хокенхалл заявил, что российская военная разведка ГРУ проявляет особую активность в работе до дестабилизации иностранных государств.

Нам точно известно, что ГРУ несет ответственность за кибератаки против Всемирного антидопингового агентства и Национального комитета Демократической партии США, осуществленные в 2016 году, сказал он. Кроме того, это ведомство в 2017 году осуществляло кибернападения на финансовый и энергетический сектор Украины, а также на киевское метро для создания максимальных трудностей украинским пассажирам.

Генерал Хокенхалл повторил уже известную из публикаций прессы информацию о том, что ГРУ попыталось сорвать работу Организации по запрещению химического оружия (ОЗХО) в 2018 году. Это произошло после проведения атаки на Британию с применением отравляющего вещества нервно-паралитического действия в городе Солсбери, отметил шеф военной разведки.

Генерал Хокенхалл, пришедший в военную разведку в 1986 году, сказал, что Россия представляет «самую большую геополитическую угрозу европейской безопасности», а также предостерег об особой опасности со стороны «все более авторитарного и агрессивного Китая».

«Он представляет наибольшую угрозу мировому порядку, пытаясь навязать миру китайские стандарты и нормы, а также используя экономическую мощь для оказания влияния и ведения подрывной деятельности. Добавьте сюда то, что китайцы позволяют себе делать большие инвестиции в модернизацию своих вооруженных сил», — сказал начальник военной разведки.

На каком топливе летают космические ракеты?

Ядовитые смеси

Каким бы ни было топливо, его горение по сути есть процесс окисления, который возможен только при наличии кислорода в чистом виде либо в каком-либо соединении (например, азотная кислота, перекись водорода и т.п.). Окружающая нас земная атмосфера содержит 21% кислорода, и этого вполне достаточно для горения, то есть для работы тепловых машин. Другое дело, когда тепловой двигатель установлен на объекте, выходящем за пределы земной атмосферы. Там он работать не сможет — ему просто «нечем дышать». Поэтому космические, как и боевые баллистические ракеты, приводимые в движение ракетными двигателями, должны нести комплексное топливо, состоящее из горючего и окислителя, причём последнего должно быть, как правило, больше (приблизительно раза в полтора).
Горючее для ракетных двигателей должно отвечать целому ряду требований. Прежде всего учитывается его энергоёмкость, определяемая удельной теплотой сгорания, а также плотность (чем она меньше, тем больше полезного груза сможет поднять ракета). Поскольку старт ракет и начальный участок их траектории проходит в атмосфере, то к компонентам ракетного топлива предъявляются и экологические требования.
В качестве горючего чаще всего используются керосин, метиловый и этиловый спирты и водород. Последний имеет самую высокую удельную теплоту сгорания и самую низкую плотность. Однако реально водород может быть использован только в сжиженном состоянии, для достижения которого газ нужно охладить до -259 °С. В противном случае (использования в газообразном состоянии) потребовались бы баки непомерного размера либо прочные (и соответственно тяжёлые) баки, рассчитанные на высокое давление сжатого газа.
Последним достижением советских химиков стала разработка ракетного горючего гептила и окислителя амила. Надо отметить, что оба эти вещества способны нанести серьёзный урон как людям, так и любым природным объектам. Любое соприкосновение с гептилом пагубно влияет практически на все системы человеческого организма. Поэтому хранение его затруднено, а личный состав, обслуживающий снаряжённые гептилом ракеты, может работать только в защитных комбинезонах и противогазах. Учитывая это, несмотря на высокую энергоёмкость, топливо «гептил/амил» используется только в боевых баллистических ракетах.

Читайте также  Почему дарят серебряные ложки на крестины

Поиск продолжается

Учёные и инженеры многих стран продолжают поиск альтернативных компонентов ракетного топлива. В поле их зрения попал природный газ. Почти не уступая керосину и превосходя спирты по энергоёмкости, этот газ имеет невысокую плотность. Однако, возможно, главным его преимуществом является доступность и дешевизна в связи с гигантскими масштабами разведанных природных запасов и развитием газодобычи во всём мире.
Основным компонентом природных газов является метан. Этот простейший из углеводородов, имеющий несложную формулу CH4, известен науке уже давно. Ещё в 1776 году итальянский физик Алессандро Вольта обнаружил метан в болотах озера Лаго-Маджоре. В ходе исследований он показал возможность поджигать газ с помощью электрической искры.
На Земле метана много: из него состоят рудничные газы, он составляет до 90% попутных нефтяных газов. По утверждению астрофизиков, метан в значительных концентрациях присутствует в атмосферах планет-гигантов Солнечной системы. Так, предположительно, на поверхности Титана в условиях низких температур (-180 °С) расположены целые озёра жидкой метано-этановой смеси. Правда, дотянуться до этих сокровищ человечеству в обозримой перспективе вряд ли удастся.
Впервые о метане как о потенциальном ракетном горючем упоминалось 60 лет назад в книге Валентина Глушко и Георгия Лангемака, однако применение метана (как и водорода) сдержи — « валось в связи с приоритетом в ж те годы разработок боевых paкет на основе топлива, способного длительно сохранять свои качества после заполнения ракетных баков. Но начиная с 1981 года к перспективным разработкам плотно подключилась ведущая двигателестроитель-ная фирма НПО «Энергомаш» им. Глушко. К настоящему времени здесь проведены широкие теоретические и экспериментальные исследования по созданию жидкостных ракетных двигателей (ЖРД) на топливной паре «метан-кислород». Оба компонента используются в сжиженном состоянии, для чего метан охлаждается до -165 °С. Результаты исследований подтвердили целесообразность разработки на этой топливной паре ЖРД практически любой мощности. XXI век становится веком информации, а это потребует вывода в космос на различные орбиты сотен спутников Земли и иных космических объектов. Станет необходимым использование высоконадёжных и экономичных ракет большой грузоподъёмности, не наносящих ущерба экологии нашей планеты. Какие преференции обещает метан? Замена жидким метаном керосина обеспечивает более высокие энергетические характеристики ракет (даёт увеличение на 20-30% массы полезного груза при той же стартовой массе ракеты);
— высокую экологическую чистоту как продуктов сгорания, так и компонентов топлива, попадающих на землю при аварийных проливах;
— более низкую (приблизительно в три раза) стоимость заправки ракеты.
Кроме того, близость температурных диапазонов жидких фаз кислорода и метана открывает дорогу для новых конструктивных решений, способствующих снижению веса ракеты.
Из-за того что плотность сжиженного метана меньше на 20%, чем у керосина, в тех же топливных баках ракеты размещается меньшая масса горючего. Однако это с избытком компенсируется повышенной удельной энергоёмкостью метана.

Журнал: Запретная история №2(95), январь 2020 года
Рубрика: История космонавтики
Автор: Константин Ришес

Скорость ракеты в космосе км/ч для межзвездного полета

Вырвавшись в космос, люди не остановились на путешествиях вокруг Земли. Следующей целью явилась Луна и чтобы туда долететь надо было прежде преодолеть притяжение Земли. Для этого скорость ракеты была 11,2 км/с или 40 000 км/ч.

Скорость ракеты 7,9 км/с (29 тыс.км/ч) необходимо чтобы попасть на околоземную орбиту, 11,2 км/с (40 тыс. км/ч) – если нужно отправить корабль в межпланетное путешествие.

Скорость корабля для полета на Луну

Для полёта на Луну космический корабль стартовал до орбитальной скорости в 29 000 км/ч, а затем разогнан до скорости примерно до 40 000 километров в час. При такой скорости космический корабль может удалиться на расстояние, на котором на него уже притяжение Луны сильнее притяжения Земли. Современная техника позволяет создавать корабли, достигающие упомянутой быстроте перемещения.
Однако если не будут действовать двигатели корабля, он разгонится притяжением Луны и упадет на нее с огромной силой, и всё живое внутри корабля погибнет. Поэтому, если в начале пути Земля-Луна реактивные двигатели ускоряют корабль в направлении к Луне, то после того как лунное притяжение сравняется с земным, двигатели будут действовать в противоположном направлении. Так обеспечивается мягкая посадка на Луну, при которой все люди внутри корабля остаются невредимыми.
Воздуха на Луне нет поэтому находиться на ней люди могут только в специальных скафандрах. Первым человеком, ступившим на поверхность Луны, был американец Армстронг, и произошло это в 1969 году, тогда первое знакомство с составом лунного грунта состоялось. Изучение его поможет лучше понять историю образования солнечной системы. Геологи не исключают нахождение на Луне таких ценных веществ, которые будет целесообразно добывать.
Масса Луны существенно меньше массы Земли. Значит, взлететь с нее легче и дорога в дальний космос легче осуществится с нее. Не исключено что эту возможность человечество в дальнейшем будет использует. Скорость вылета на орбиту Луны гораздо меньше и составляет – 1,7 км/с или 6120 км/ч.

Полеты на Марс и другие планеты

Это 266 666 км в день или со скоростью 11 111 километров в час 3 км в секунду.

Одной из основных существующих проблем при полете на другие планеты является скорость ракеты в космосе км/ч которой не достаточно. Пока что более реальней планируется полёт на Марс за марсианскими образцами.

Если до самой ближайшей планеты Марс лететь минимум 210 дней, что физически трудно, но достижимо для человека, то полеты на другие планеты невозможны из-за физиологических возможностей людей.

Скорость ракеты в космосе км/ч зависит от двигателя. Чем с большей быстротой вырываются газы из сопла реактивного двигателя, тем быстрее летит ракета. Газ, образующийся при сгорании современного химического топлива, имеет скорость 3-4 километра в секунду (10 800-14 400 километров в час). И этим ограничивается максимальная быстрота перемещения, которую они могут сообщить ракете с космическим кораблем.

Ионные двигатели для космических аппаратов

А вот ионы и электроны в специальных ускорителях могут быть разогнаны до быстроты близкой к скорости света – 300 000 километров в секунду. Однако такие ускорители – это пока массивные сооружения не подходящие для летательных аппаратов. Но установки, у которых скорость истечения заряженных частиц около 100 километров в секунду, могут быть на ракетах установлены. Следовательно, они могут сообщить соединенному с ними телу быстроту перемещения большую, чем может достигнуть ракета с химическим топливом. К сожалению, у созданных к настоящему времени ионных космических двигателях сила тяги мала, и вывести на орбиту многотонную ракету с кораблем пока они не могут.
Однако их целесообразно устанавливать на корабле с тем, чтобы они работали, когда корабль уже летает по орбите. Находясь на корпусе корабля, они могут непрерывно поддерживать его ориентацию и постепенно слабым воздействием увеличивать скорость корабля выше той, которую ему сообщили с помощью химического горючего.
Разработка таких, действующих на орбите, электрореактивных двигателей ведется, используя различные физические явления. Одна из задач, стоящих перед разработчиками ионных космических двигателей, сделать их пригодными для полетов на другие планеты.

Возможность достичь с такими двигателями значительно больших скоростей ракеты в космосе, чем с химическим топливом, делает более реальным создание кораблей для полетов на ближайшие планеты.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: