Как вычитать столбиком

Вычитание столбиком

Как вычитать столбиком

Вычитание многозначных чисел обычно выполняют столбиком, записывая числа друг под другом (уменьшаемое сверху, вычитаемое снизу) так, чтобы цифры одинаковых разрядов стояли друг под другом (единицы под единицами, десятки под десятками и т. д.). Слева между числами ставится знак действия. Под вычитаемым проводят черту. Вычисление начинают с разряда единиц: из единиц вычитают единицы, затем из десятков – десятки и т. д. Результат вычитания записывают под чертой:

Рассмотрим пример, когда в каком-либо разряде цифра уменьшаемого меньше цифры вычитаемого:

От 2 мы не можем отнять 9, что нам делать в этом случае? В разряде единиц у нас нехватка, но в разряде десятков у уменьшаемого аж 7 десятков, поэтому мы можем один из этих десятков перекинуть в разряд единиц:

В разряде единиц у нас было 2, мы перекинули десяток, стало 12 единиц. Теперь мы легко можем от 12 отнять 9. Записываем под чертой в разряде единиц 3. В разряде десятков у нас было 7 единиц, одну из них мы перекинули в простые единицы, осталось 6 десятков. Записываем под чертой в разряде десятков 6. В результате мы получили число 63:

Вычитание столбиком обычно не записывают так подробно, вместо этого, над цифрой разряда, у которого будет занята единица, ставят точку, чтобы не запоминать, у какого разряда надо будет дополнительно вычесть единицу:

При этом говорят так: из 2 вычесть 9 нельзя, занимаем единицу, из 12 вычитаем 9 — получим 3, пишем 3, в разряде десятков у нас было 7 единиц, мы одну перекинули, осталось 6, пишем 6 .

Теперь рассмотрим вычитание столбиком из чисел, содержащих нули:

Начинаем вычитать. От 7 отнимаем 3, пишем 4. От нуля мы не можем отнять 5, поэтому мы вынуждены занять единицу в старшем разряде, но в старшем разряде у нас тоже 0, поэтому и для этого разряда мы вынуждены занять в более старшем разряде. Занимаем единицу из разряда тысяч, получаем 10 сотен:

Одну из единиц разряда сотен мы занимаем в младший разряд, получаем 10 десятков. Из 10 вычитаем 5, пишем 5:

В разряде сотен у нас осталось 9 единиц поэтому, от 9 отнимаем 6, пишем 3. В разряде тысяч у нас была единица, но мы её потратили на младшие разряды, поэтому здесь остаётся нуль (его записывать не надо). В результате мы получили число 354:

Такая подробная запись решения была приведена, чтобы было проще понять, как выполняется вычитание столбиком из чисел содержащих нули. Как уже упоминалось, на практике решение обычно записывается так:

А все упомянутые действия выполняются в уме. Чтобы было легче выполнять вычитание, запомните простое правило:

Если при вычитании столбиком над нулём стоит точка, нуль превращается в 9.

Калькулятор вычитания столбиком

Данный калькулятор поможет вам выполнить вычитание чисел столбиком. Просто введите уменьшаемое и вычитаемое и нажмите кнопку Вычислить .

Вычитание натуральных чисел столбиком: примеры, решения

Существует удобный метод нахождения разности двух натуральных чисел – вычитание в столбик, или вычитание столбиком. Этот способ берет свое название от метода записи уменьшаемого и разности друг под другом. Так можно провести и основные, и промежуточные вычисления в соответствии с нужными разрядами чисел.

Этим методом удобно пользоваться, поскольку это очень просто, быстро и наглядно. Все сложные на первый взгляд подсчеты можно свести к сложению и вычитанию простых чисел.

Ниже мы рассмотрим, как именно пользоваться этим методом. Наши рассуждения будут подкреплены примерами для большей наглядности.

Что нужно повторить перед изучением вычитания столбиком?

Метод основан на некоторых простых действиях, которые мы уже разбирали ранее. Необходимо повторить, как правильно вычитать с помощью таблицы сложения. Также желательно знать основное свойство вычитания равных натуральных чисел (в буквенном виде оно записывается как a − a = 0 ). Нам понадобятся следующие из него равенства a − 0 = a и 0 − 0 = 0 , где a – любое произвольно взятое натуральное число (если требуется, посмотрите основные свойства нахождения разности целых чисел).

Кроме того, важно знать, как определять разряд натуральных чисел.

Разбор метода вычитания столбиком

Главное на первом этапе – правильно записать исходные данные. Для начала записываем первое число, из которого будем вычитать. Под ним располагаем вычитаемое. Цифры должны быть расположены строго одна под другой с учетом разряда: десятки под десятками, сотни под сотнями, единицы под единицами. Запись читается справа налево. Далее ставим минус с левой стороны от столбика и подводим черту под обоими числами. Под ней будет записываться конечный результат.

Покажем на примере, какая запись подсчета является правильной:

С помощью первой мы можем найти, сколько будет 56 − 9 , с помощью второй – 3 004 − 1 670 , третьей – 203 604 500 − 56 777 .

Как видно, с помощью этого метода можно производить вычисления разной сложности.

Далее рассмотрим сам процесс нахождения разности. Для этого выполняем поочередное вычитание значений разрядов: сначала вычитаем единицы из единиц, потом десятки из десятков, потом сотни из сотен и т.д. Значения записываем под чертой, отделяющей исходные данные от результата. В итоге у нас должно получиться число, которое и будет верным ответом задачи, т.е. разностью исходных чисел.

Как именно выполняются подсчеты, можно увидеть на этой схеме:

С общей картиной записи и подсчета мы разобрались. Однако в методе есть и некоторые моменты, нуждающиеся в уточнении. Для этого мы приведем конкретные примеры и поясним их. Начнем с простейших задач и будем постепенно наращивать сложность, пока наконец не разберем все нюансы.

Советуем внимательно прочитать все примеры, потому что каждый из них иллюстрирует отдельные непонятные моменты. Если вы дойдете до конца и запомните все объяснения, то подсчет разности натуральных чисел в дальнейшем не будет вызывать у вас ни малейших затруднений.

Условие: найдем разность 74 805 — 24 003 с помощью вычитания столбиком.

Решение:

Запишем эти числа одно под другим, правильно расположив разряды друг под другом, и подчеркнем их:

Вычитание начинается справа налево, то есть с единиц. Считаем: 5 — 3 = 2 (если нужно, повторите таблицы сложения натуральных чисел). Итог запишем под чертой там, где указаны единицы:

Вычитаем десятки. Оба значения в нашем столбике нулевые, а вычитание нуля из нуля всегда дает нуль (как вы помните, мы упоминали, что нам в дальнейшем потребуется это свойство вычитания). Результат записываем в нужное место:

Далее считаем значения разности сотен: : 8 − 0 = 8 . Вписываем итог следующим числом в наш будущий результат:

Следующий шаг – нахождение значения разности тысяч: 4 − 4 = 0 . Получившийся нуль записываем на положенное ему место и получаем в итоге:

Нам остается подсчитать только разность между цифрами, означающими десятки тысяч. Пишем последнюю цифру под чертой и смотрим, что у нас вышло:

У нас получилось 50 802 , которое и будет верным ответом для указанного выше примера. На этом вычисления завершены.

Ответ: 50 802 .

Возьмем другой пример:

Условие: подсчитаем, сколько будет 5 777 — 5 751 с помощью метода нахождения разности столбиком.

Решение:

Шаги, которые нам нужно сделать, мы уже приводили выше. Выполняем их последовательно для новых чисел и получаем в итоге:

В начале результата стоит два нуля. Т.к. они стоят первыми, то можно смело их отбросить и получить в ответе 26 . Это число и будет правильным ответом нашего примера.

Читайте также  Как делать правильно приседания

Ответ: 26 .

Если посмотреть на условия двух примеров, приведенных выше, легко заметить, что до сих пор мы брали только числа, равные по количеству знаков. Но метод столбика можно использовать и тогда, когда уменьшаемое включает в себя больше знаков, чем вычитаемое.

Условие: найдем разность 502 864 число 2 330 .

Решение

Запишем числа друг под другом, соблюдая нужную соотнесенность разрядов. Это будет выглядеть так:

Теперь поочередно вычисляем значения:

– десятков: 6 − 3 = 3 ;

Запишем, что у нас получилось:

Вычитаемое имеет значения в месте десятков и сотен тысяч, а вот уменьшаемое нет. Что же делать? Вспомним, что пустота в математических примерах равнозначна нулю. Значит, нам нужно вычесть нули из исходных значений. Вычитание нуля из натурального числа всегда дает нуль, следовательно, все, что нам остается, – это переписать исходные значения разрядов в область ответа:

Наши подсчеты завершены. Мы получили итог: 502 864 — 2 330 = 500 534 .

Ответ: 500 534 .

В наших примерах значения разрядов вычитаемого всегда оказывались меньше, чем значения уменьшаемого, поэтому никаких трудностей при подсчете это не вызывало. Что делать, если из значения верхней строки нельзя вычесть значение нижней, не уйдя при этом в минус? Тогда нам нужно «взять взаймы» значения более старших разрядов. Возьмем конкретный пример.

Условие: найдите разность 534 — 71 .

Пишем уже привычный нам столбик и делаем первый шаг вычислений: 4 — 1 = 3 . Получаем:

Далее нам надо перейти к подсчету десятков. Для этого нам надо из 3 вычесть 7 . Это действие с натуральными числами выполнить нельзя, ведь оно имеет смысл только при таком уменьшаемом, которое больше вычитаемого. Поэтому в данном примере нам нужно «занять» единицу из старшего разряда и тем самым «разменять» его. То есть 100 мы как бы меняем на 10 десяток и берем одну из них. Чтобы не забыть об этом, отметим нужный разряд точкой, а в десятках запишем 10 другим цветом. У нас получилась запись следующего вида:

Далее нам надо добавить полученные 10 десяток к трем, что у нас уже есть: 3 + 10 = 13 , а потом уже из 13 вычитаем 7 :

Получившийся результат пишем на нужном месте под чертой:

Нам осталось закончить подсчет, вычислив сотни. У нас стоит точка над числом 5 : это значит, что мы отсюда брали десяток для предыдущего разряда. Тогда 5 − 1 = 4 . От четверки же ничего отнимать не нужно, поскольку вычитаемое в разряде сотен значений не имеет. Записываем 4 на место и получаем ответ:

Ответ: 463 .

Зачастую выполнять действие «размена» в рамках одного примера приходится несколько раз. Разберем такую задачу.

Условие: сколько будет 1 632 — 947 ?

Решение

В первом же этапе подсчета надо вычесть двойку из семерки, так что сразу «занимаем» десятку для размена на 10 единиц. Отмечаем это действие точкой и считаем 10 + 2 — 7 = 5 . Вот как выглядит наша запись с отметками:

Далее нам надо подсчитать десятки. Указанная точка означает, что для вычислений мы берем в этом разряде число на единицу меньше: 3 − 1 = 2 . Из двойки нам придется вычитать четверку, так что «размениваем» сотни. У нас получается ( 10 + 2 ) − 4 = 12 − 4 = 8 .

Движемся дальше к подсчету сотен. Из шестерки мы уже занимали единицу, так что 6 − 1 = 5 . Из пятерки вычитаем девятку, для чего берем имеющуюся у нас тысячу и «размениваем» ее на 10 сотен. Таким образом, ( 10 + 5 ) − 9 = 15 − 9 = 6 . Теперь наша запись с примечаниями выглядит так:

Нам осталось сделать подсчеты в тысячном разряде. Одну единицу отсюда мы уже занимали, так что 1 − 1 = 0 . Пишем результат под итоговую черту и смотрим, что получилось:

На этом вычисления закончены. Нуль в начале можно отбросить. Значит, 1 632 − 947 = 685 .

Ответ: 685 .

Возьмем еще более сложный пример.

Условие: вычтите 907 из 8 002 .

Решение

В первом шаге, как и ранее, нам приходится вычитать двойку из семерки. Идем в десятки за «разменом». Но у нас их нет, как нет и сотен: на месте этих разрядов у уменьшаемого стоят нули. Поэтому идем сразу в тысячу. Это 10 сотен, так что:

После этого одну сотню представляем в виде 10 десяток:

Финальное действие в «размене» – один десяток на 10 единиц. Получим:

Только на этом этапе мы сможем наконец подсчитать сумму 10 + 2 = 12 и вычесть из нее число 7 . В итоге у нас будет 5. Поместим результат на нужное место:

Теперь движемся к другим разрядам, отмеченным точками. Видим над десятками точку – считаем: 10 − 1 = 9 . Прибавляем к нему значение разряда десятков уменьшаемого ( 0 ) : 9 + 0 = 9 . Из результата надо вычесть значения разряда десятков вычитаемого ( 0 ) : 9 − 0 = 9 . У нас вышло:

Далее над сотнями также видим точку. Считаем: 10 − 1 = 9 . Прибавляем сотни числа 8 002 и от результата отнимаем сотни 907 . Получаем: ( 9 + 0 ) − 9 = 9 − 9 = 0 . Теперь наша запись выглядит так:

У нас остался последний шаг. Мы видим оставшееся число восемь с точкой, означающей, что ее надо уменьшить на единицу. Считаем число 8 − 1 = 7 :

Ответ: 7095 .

Это были все сложные моменты, которые мы хотели пояснить. Они пригодятся для быстрых вычислений на практике. Завершим статью еще одним примером, но без комментариев:

Вычитание натуральных чисел столбиком, примеры, решения.

Вычитание натуральных чисел удобно проводить особым методом, который получил название вычитание столбиком или вычитание в столбик. Этот способ вычитания оправдывает свое название, так как уменьшаемое, вычитаемое и разность записываются в столбик. Промежуточные вычисления также проводятся в столбиках, соответствующих разрядам чисел.

Удобство вычитания натуральных чисел столбиком заключается в простоте вычислений. Вычисления сводятся к использованию таблицы сложения и применению свойств вычитания.

Давайте разберемся, как выполняется вычитание столбиком. Процесс вычитания будем рассматривать вместе с решением примеров. Так будет понятнее.

Навигация по странице.

  • Что необходимо знать для вычитания столбиком?
  • Вычитание столбиком на примерах.

Что необходимо знать для вычитания столбиком?

Для вычитания натуральных чисел столбиком необходимо знать, во-первых, как выполняется вычитание с помощью таблицы сложения.

Во-вторых, при вычитании столбиком мы будем постоянно пользоваться свойством вычитания равных натуральных чисел a−a=0, а также следующими результатами a−0=a; 0−0=0, где a – произвольное натуральное число (они подробно рассмотрены в статье свойства вычитания целых чисел).

Вычитание столбиком на примерах.

Начнем с записи. Сначала записывается уменьшаемое. Под уменьшаемым располагается вычитаемое. Причем делается это так, что цифры оказываются одна под другой, начиная справа. Слева от записанных чисел ставится знак минус, а внизу проводится горизонтальная линия, под которой будет записан результат после проведения необходимых действий.

Приведем несколько примеров правильных записей при вычитании столбиком. Запишем в столбик разность 56−9, разность 3 004−1 670, а так же 203 604 500−56 777.

Итак, с записью разобрались.

Переходим к описанию процесса вычитания столбиком. Его суть заключается в последовательном вычитании значений соответствующих разрядов. Сначала вычитаются значения разряда единиц, далее – значения разряда десятков, далее – значения разряда сотен и т.д. Результаты записываются под горизонтальной линией на соответствующих местах. Число, которое образуется под линией после завершения процесса, является искомым результатом вычитания двух исходных натуральных чисел.

Представим схему, иллюстрирующую процесс вычитания столбиком натуральных чисел.

Приведенная схема дает общую картину вычитания натуральных чисел столбиком, однако она не отражает всех тонкостей. С этими тонкостями разберемся при решении примеров. Начнем с самых простых случаев, а дальше будем постепенно продвигаться к более сложным случаям, пока не разберемся со всеми нюансами, которые могут встретиться при вычитании столбиком.

Читайте также  Как посчитать наценку в процентах

Рекомендуем рассмотреть ВСЕ приведенные ниже примеры, так как в каждом следующем примере разбирается новая ситуация. В итоге Вы сможете легко вычитать столбиком любые натуральные числа.

Для начала вычтем столбиком из числа 74 805 число 24 003.

Запишем эти числа так, как этого требует метод вычитания столбиком:

Начинаем с вычитания значений разрядов единиц, то есть, вычитаем из числа 5 число 3. Из таблицы сложения имеем 5−3=2. Записываем полученные результат под горизонтальную черту в этом же столбике, в котором находятся числа 5 и 3:

Теперь вычитаем значения разряда десятков (в нашем примере они равны нулю). Имеем 0−0=0 (это свойство вычитания мы упоминали в предыдущем пункте). Записываем полученный нуль под линию в том же столбике:

Идем дальше. Вычитаем значения разряда сотен: 8−0=8 (по свойству вычитания, озвученному в предыдущем пункте). Теперь наша запись примет следующий вид:

Переходим к вычитанию значений разряда тысяч: 4−4=0 (это свойств вычитания равных натуральных чисел). Имеем:

Осталось вычесть значения разряда десятков тысяч: 7−2=5. Записываем полученное число под черту на нужное место:

На этом вычитание столбиком завершено. Число 50 802, которое получилось внизу, является результатом вычитания исходных натуральных чисел 74 805 и 24 003.

Рассмотрим следующий пример.

Отнимем столбиком от числа 5 777 число 5 751.

Делаем все так же, как в предыдущем примере – вычитаем значения соответствующих разрядов. После завершения всех шагов запись примет следующий вид:

Под чертой получили число, в записи которого слева находятся цифры . Если эти цифры отбросить, то получим результат вычитания исходных натуральных чисел. В нашем случае отбрасываем две цифры , получившиеся слева. Имеем: разность 5 777−5 751 равна 26.

До этого момента мы вычитали натуральные числа, записи которых состоят из одинакового количества знаков. Сейчас на примере разберемся, как вычитаются столбиком натуральные числа, когда в записи уменьшаемого больше знаков, чем в записи вычитаемого.

Вычтем из числа 502 864 число 2 330.

Записываем уменьшаемое и вычитаемое в столбик:

По очереди вычитаем значения разряда единиц: 4−0=4; далее – десятков: 6−3=3; далее – сотен: 8−3=5; далее – тысяч: 2−2=0. Получаем:

Теперь, чтобы завершить вычитание столбиком, нам еще нужно вычесть значения разряда десятков тысяч, а дальше – значения разряда сотен тысяч. Но из значений этих разрядов (в нашем примере из чисел и 5) нам вычитать нечего (так как вычитаемое число 2 330 не имеет цифр в этих разрядах). Как же быть? Очень просто – значения этих разрядов просто переписываются под горизонтальную линию:

На этом вычитание столбиком натуральных чисел 502 864 и 2 330 завершено. Разность равна 500 534.

Осталось рассмотреть случаи, когда на некотором шаге вычитания столбиком значение разряда уменьшаемого числа меньше, чем значение соответствующего разряда вычитаемого. В этих случаях приходится «занимать» из старших разрядов. Давайте разберемся с этим на примерах.

Вычтем столбиком из числа 534 число 71.

На первом шаге вычитаем из 4 число 1, получаем 3. Имеем:

На следующем шаге нам нужно вычитать значения разряда десятков, то есть, из числа 3 нужно вычесть число 7. Так как 3

Прибавляем полученные после «размена» 10 десятков к 3 имеющимся десяткам: 3+10=13, и из этого числа вычитаем 7. Имеем 13−7=6. Это число 6 записываем под горизонтальной чертой на свое место:

Переходим к вычитанию значений разряда сотен. Здесь мы видим над числом 5 точку, которая означает, что из этого числа мы брали единицу «на размен». То есть, сейчас мы имеем не 5, а 5−1=4. От числа 4 больше ничего отнимать не нужно (так как исходное вычитаемое число 71 не содержит цифр в разряде сотен). Таким образом, под горизонтальную черту записываем число 4:

Итак, разность 534−71 равна 463.

Иногда при вычитании столбиком «разменивать» единицы из старших разрядов приходится несколько раз. В подтверждение этих слов разберем решение следующего примера.

Отнимем от натурального числа 1 632 число 947 столбиком.

На первом же шаге нам нужно вычесть из числа 2 число 7. Так как 2 (10+2)−7=12−7=5 :

На следующем шаге нам нужно вычесть значения разряда десятков. Мы видим, что над числом 3 стоит точка, то есть, мы имеем не 3, а 3−1=2. И от этого числа 2 нам нужно отнять число 4. Так как 2 (10+2)−4=12−4=8 :

Теперь вычитаем значения разряда сотен. Из числа 6 была занята единица на предыдущем шаге, поэтому имеем 6−1=5. От этого числа нам нужно отнять число 9. Так как 5 (10+5)−9=15−9=6 :

Остался последний шаг. Из единицы в разряде тысяч мы занимали на предыдущем шаге, поэтому имеем 1−1=0. От полученного числа нам ничего больше отнимать не нужно. Это число и записываем под горизонтальную черту:

На этом вычитание столбиком завершено. После отбрасывания цифры , стоящей слева под чертой, получаем результат: 1 632−947=685.

Вычислим столбиком разность 8 002−907.

На первом шаге нам из числа 2 нужно вычесть число 7. Так как 2

Теперь размениваем 1 сотню на 10 десятков:

Наконец, 1 десяток размениваем на 10 единиц:

И только сейчас мы можем вычесть из суммы 10+2=12 число 7, получаем 12−7=5. Наша запись примет следующий вид:

На следующем шаге вычитания столбиком видим, что над числом 10 стоит точка, то есть, имеем 10−1=9. К этому числу прибавляем значение разряда десятков уменьшаемого числа 8 002 (то есть, нуль): 9+0=9, и от полученного числа вычитаем значение разряда десятков вычитаемого числа 907 (то есть, нуль): 9−0=9. Получаем:

На следующем шаге над числом 10 стоит точка, то есть, имеем 10−1=9. К этому числу прибавляем значение разряда сотен числа 8 002, после чего от полученного результата отнимаем значение разряда сотен числа 907, получаем (9+0)−9=9−9=0 :

На последнем шаге вычитания столбиком исходных натуральных чисел видим лишь число 8, над которым стоит точка. В этом случае под горизонтальную черту записываем число 8−1=7:

Итак, искомая разность равна 7 095.

Ну вот мы и разобрали все нюансы, которые могут возникнуть при вычитании натуральных чисел столбиком.

В заключении приведем решение еще одного примера, но обойдемся без пояснений.

Проведем вычитание столбиком двух натуральных чисел 51 038 628 и 999 531.

Как вычитать в столбик

Умение считать является одной из основ грамотного человека, хотя последнее время в связи со стремительным развитием электроники важность этого навыка несколько уменьшилась. Сейчас функции калькулятора присутствуют практически в каждом электронном устройстве, однако умение считать без помощи калькулятора может очень пригодиться в жизни. Мы уже вспоминали раньше операцию сложения, а сейчас освежим в памяти еще одну из арифметических операций, а именно вычитание. Считать мы будет на листе бумаги методом вычитания в столбик.

Для примера, найдем разность чисел 5183 и 472. Напомним, что число из которого вычитают другое число называется «уменьшаемым» (5183), число на которое уменьшается исходное число называется «вычитаемым» (472), а результат операции называется «разностью».

Для нахождения разности чисел методом вычитания в столбик, берем листок бумаги и записываем «уменьшаемое», а под ним «вычитаемое» выравнивая их по правому краю. Другими словами, нужно записать единицы под единицами, десятки под десятками, сотни под сотнями и так далее. Таким образом одинаковые разряды обоих чисел оказываются строго друг под другом. После этого проводим под получившимся столбиком горизонтальную черту и ставим слева знак минус.

Читайте также  Как покрасить деревянную детскую кровать

Вычитание столбиком осуществляется справа налево поразрядно. Начинаем с единиц, считаем 3-2=1 и записываем получившейся результат под чертой.

Переходим к десяткам, нам нужно от 8 отнять 7 и результат опять записать под чертой.

Теперь дошла очередь до сотен, но здесь появляется небольшая проблема, поскольку 1 меньше чем 4. Чтобы ее преодолеть нужно занять десяток у числа слева, в данном случае у тысяч. Получается 10 взятые от числа слева плюс 1 равно 11 и минус 4 равно 7, записываем цифру семь под чертой, а над цифрой 5 в уменьшаемом ставим точку.

Точка над числом указывает, что у него был заимствован десяток и его следовательно нужно будет в дальнейшем уменьшить. Поскольку в вычитаемым больше цифр не осталось, то просто записываем оставшиеся цифры уменьшаемого под чертой. Главное быть внимательным и не забыть, что мы занимали у разряда тысяч, о чем свидетельствует точка над цифрой, поэтому пишем 4.

В результате мы нашли разность двух чисел методом вычитания в столбик и получили результат равный 4711. Все очень просто, главное внимательность.

Хотя есть один момент, который порой вызывает трудности, это необходимость занять, когда слева оказывается ноль. На самом деле все точно также, давайте рассмотрим это на примере и узнаем как вычитать в столбик числа с нулями. В качестве примера вычтем из 104 например 67. Записываем их друг под другом в столбик. Поскольку 4 меньше 7, то нам требуется занять слева. Ставим над нулем точку, однако у нуля нельзя ничего занять, поэтому двигаемся еще левее. Видим единицу, занимаем у нее и ставим над ней точку. В результате мы имеем 10+4=14 и 14-7=7.

Смещаемся влево, здесь мы имеем ноль с точкой, значит на самом деле там цифра 9, поэтому вычитаем из 9 число 6 получается 3.

Снова смещаемся левее, здесь видим 1 с точкой, значит на самом деле здесь 0. В вычитаемом тоже больше не осталось чисел, значит разность равна 37.

Так же требуется запомнить, что способ вычитания столбиком подходит только для случая, когда уменьшаемое больше вычитаемого. Если вам требуется из меньшего числа вычесть в столбик большее число, то просто нужно поменять их местами, то есть вычитать из большего меньшее, а к полученному результату добавить знак минус.

Как видите, все довольно просто, главное помнить простые правила и быть внимательным и даже если у вас не окажется под рукой калькулятора или телефона, вы всегда сможете найти разность двух чисел с помощью бумаги и ручки в столбик. Вы так же можете ознакомиться с правилами выполнения умножения и деления.

интернет проект BeginnerSchool.ru

Сайт для детей и их родителей

  • Главная
  • Русский язык
  • Математика
  • Статьи
    • Подготовка к школе
    • Программы обучения
    • Начальная школа
    • Основные правила
    • Проекты
    • Детские стихи, рассказы и сказки
  • Скачать
  • Детям
    • Достопримечательности
  • Родителям
    • Электронный дневник
    • Прием в школу
  • Игры on-line
  • Видеоуроки
  • О проекте

Вычитание в столбик

Для того чтобы вычесть одно число из другого, поместим вычитаемое под уменьшаемым, следующим образом: единицы под единицами, десятки под десятками. Для примера, в качестве уменьшаемого возьмем двузначное число, а в качестве вычитаемого – однозначное.

Вычитаем единицы вычитаемого из единиц уменьшаемого:

7 – 5 = 2 результат пишем под единицами.

Теперь вычитаем десятки из десятков, но у вычитаемого нет десятков, поэтому опускаем десяток уменьшаемого в ответ. В результате получаем разность:

Теперь возьмем оба числа двухзначных:

Вычитаем единицы вычитаемого из единиц уменьшаемого:

6 – 4 = 2 результат пишем под единицами

Теперь вычитаем десятки вычитаемого из десятков уменьшаемого:

8 – 3 = 5 результат пишем под десятками.

В результате получаем разность:

Вычитание с переходом через десяток

Давайте попробуем найти разность следующих чисел:

Вычитаем единицы. Из 7 вычесть 9 нельзя, занимаем один десяток из десятков уменьшаемого. Чтобы не забыть ставим точку над десятками.

17 – 9 = 8 результат пишем под единицами.

Теперь вычитаем десятки из десятков. У вычитаемого нет десятков, но мы занимали один десяток у уменьшаемого:

2 десятка – 1 десяток = 1 десяток результат пишем под десятками.

В результате получаем разность:

Теперь для примера возьмем трехзначные числа:

Вычитаем единицы. 2 меньше 8, поэтому занимаем один десяток из десятков уменьшаемого: 2 + 10 = 12 (пишем 10 над единицами). Чтобы не забыть ставим точку над десятками.

12 – 8 = 4 результат пишем под единицами.

Мы занимали один десяток из десятков для единиц, значит в уменьшаемом уже не три десятка, а два (3 десятка – 1 десяток = 2 десятка).

Два десятка меньше чем шесть, занимаем одну сотню или 10 десятков из сотен (2 десятка + 10 десятков = 12 десятков пишем 10 над десятками уменьшаемого), а чтоб не забыть ставим точку над сотнями. Вычитаем десятки:

12 десятков – 6 десятков = 6 десятков результат пишем под десятками.

Мы занимали одну сотню из сотен уменьшаемого для десятков, значит у нас не 9 сотен, а 8 сотен (9 сотен – 1 сотня = 8 сотен). Вычитаем сотни:

8 сотен – 7 сотен = 1 сотня . Результат пишем под сотнями.

В результате получаем:

932 – 768 = 164

Усложним задачу. Что делать если в разряде, из которого надо занять десяток, равен нулю? Например:

Начинаем с единиц. 2 меньше 8, то есть надо занять из десятков. Но у уменьшаемого в десятках , значит, для десятков надо занимать у сотен. В разряде сотен в уменьшаемом тоже , занимаем из тысяч. Чтобы не забыть ставим над тысячами точку.

В сотнях уменьшаемого остается 9, так как мы занимаем одну сотню для десятков: 10 – 1 = 9 пишем 9 над сотнями.

В десятках тоже остается 9, так как мы заняли один десяток для единиц: 10 – 1 = 9 пишем 9 над десятками, а над единицами пишем 10 .

12 – 8 = 4 пишем результат под единицами.

В десятках уменьшаемого осталось 9, считаем:

9 – 6 = 3 пишем результат под десятками.

В сотнях уменьшаемого осталось 9, у вычитаемого сотен нет, опускаем 9 в ответ под сотни.

В разряде тысяч уменьшаемого была 1, мы её занимали (точка над тысячами), значит тысяч больше не осталось. В результате получаем:

1002 – 68 = 934

Итак, подведем итог.

Для того чтобы найти разность двух чисел (вычитание столбиком) :

  1. помещаем вычитаемое под уменьшаемым, пишем единицы под единицами, десятки под десятками и так далее.
  2. Вычитаем поразрядно.
  3. Если надо занять десяток из следующего разряда, то над разрядом, из которого занимали, ставим точку. Над разрядом, для которого занимаем, ставим 10.
  4. Если в разряде, из которого занимаем, стоит 0, то для него занимаем из следующего разряда уменьшаемого, над которым ставим точку. Над разрядом, для которого занимали, ставим 9, так как один десяток заняли.

Спасибо, что Вы с нами!

  1. ЦифрыС самого детства нас учат считать игрушки, конфетки, яблоки. Люди.
  2. Многозначные числаВ прошлый раз мы говорили о цифрах и о разрядах.
  3. Сложение и вычитание – закрепляем материалРанее мы опубликовали видеоуроки «Сложение» и «Вычитание». А сейчас пойдет.
  4. Сложение в столбикЛегко сложить одноразрядные или однозначные числа. Например, числа 3 и.
  5. Видеоурок “Учимся считать”: 2 серия: “Вычитание”В цикле статей на тему обучения дошкольников счету мы представляли.

Понравилась статья — поделитесь с друзьями:

Оставляйте пожалуйста комментарии в форме ниже

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: