Как построить синусоиду

Тригонометрические функции

В школьной программе изучаются четыре тригонометрических функции — синус, косинус, тангенс и котангенс. В этой статье мы рассмотрим графики и основные свойства этих функций.

1. Начнем с построения графика функции y = sin x.

Выберем подходящий масштаб. По оси X: три клетки примем за (это примерно полтора). Тогда — одна клеточка, — две клетки.
По оси Y : две клетки примем за единицу.

Область определения функции y = sin x — все действительные числа, поскольку значение sin α можно посчитать для любого угла α.

Вспомним, что у нас есть тригонометрический круг, на котором обозначены синусы и косинусы основных углов. Удобнее всего отметить на будущем графике точки, в которых значение синуса является рациональным числом.

Можем добавить, для большей плавности графика, точки и . В них значение синуса равно
Соединим полученные точки плавной кривой.

Мы помним, что . Это значит, что
Получается часть графика, симметричная той, которую нарисовали раньше.

Кроме того, значения синуса повторяются через полный круг или через целое число кругов, то есть

Это значит, что функция y = sin x является периодической. Мы уже построили уча-сток графика длиной 2π. А теперь мы как будто «копируем» этот участок и повторяем его с периодом 2π:

Синусоида построена.
Перечислим основные свойства функции y = sin x.

1) D(y): x ∈ R, то есть область определения — все действительные числа.

2) E(y): y ∈ [−1; 1]. Это означает, что наибольшее значение функции y = sin x равно единице, а наименьшее — минус единице.

3) Функция y = sin x — нечетная. Ее график симметричен относительно нуля.

4) Функция y = sin x — периодическая. Ее наименьший положительный период равен 2π.

2. Следующий график: y = cos x. Масштаб — тот же. Отметим на графике точки, в которых косинус является рациональным числом:

Поскольку cos (−x) = cos x, график будет симметричен относительно оси Y , то есть левая его часть будет зеркальным отражением правой.

Функция y = cos x — тоже периодическая. Так же, как и для синуса, ее значения повторяются через 2πn. «Копируем» участок графика, который уже построили, и повторяем периодически.

Перечислим основные свойства функции y = cos x.

1) D(y): x ∈ R, то есть область определения — все действительные числа.

2) E(y): y ∈ [−1; 1]. Это означает, что наибольшее значение функции y = cos x равно единице, а наименьшее — минус единице.

3) Функция y = cos x — четная. Ее график симметричен относительно оси Y .

4) Функция y = cos x — периодическая. Ее наименьший положительный период равен 2π.

Отметим еще одно свойство. Графики функций y = sin x и y = cos x весьма похожи друг на друга. Можно даже сказать, что график косинуса получится, если график синуса сдвинуть на влево. Так оно и есть — по одной из формул приведения, .

Форма графиков функций синус и косинус, которые мы построили, очень характерна и хорошо знакома нам. Такой линией дети рисуют волны. Да, это и есть волны!

Функции синус и косинус идеально подходят для описания колебаний и волн — то есть процессов, повторяющихся во времени.

По закону синуса (или косинуса) происходят колебания маятника или груза на пружине. Переменный ток (тот, который в розетке) выражается формулой I(t) = I cos(ωt+α). Но и это не все. Функции синус и косинус описывают звуковые, инфра– и ультразвуковые волны, а также весь спектр электромагнитных колебаний. Ведь то, что наш глаз воспринимает как свет и цвет, на самом деле представляет собой электромагнитные колебания. Разные длины волн света воспринимается нами как разные цвета. Наши глаза видят лишь небольшую часть спектра электромагнитных волн. Кроме видимого цвета, в нем присутствуют радиоволны, тепловое (инфракрасное) излучение, ультрафиолетовое, рентгеновское и гамма–излучение. Более того — объекты микромира (например, электрон) проявляют волновые свойства.

3. Перейдем к графику функции y = tg x.

Чтобы построить его, воспользуемся таблицей значений тангенса. Масштаб возьмем тот же — три клетки по оси X соответствуют , две клетки по Y — единице. График будем строить на отрезке от 0 до π. Поскольку tg (x + πn) = tg x, функ-ция тангенс также является периодической. Мы нарисуем участок длиной π, а затем периодически его повторим.

Непонятно только, как быть с точкой . Ведь в этой точке значение тангенса не определено. А как же будет вести себя график функции y = tg x при x, близких к , то есть к 90 градусам?

Чтобы ответить на этот вопрос, возьмем значение x, близкое к , и посчитаем на калькуляторе значения синуса и косинуса этого угла. Пусть .

Синус угла — это почти 1. Точнее, sin = 0,9998. Косинус этого угла близок к нулю. Точнее, cos = 0,0175.

Тогда
график уйдет на 59 единиц (то есть на 118 клеток) вверх. Можно сказать, что если x стремится к (то есть к , значение функции y = tg x стремится к бесконечности .

Аналогично, при x, близких к , график тангенса уходит вниз, то есть стремится к минус бесконечности .

Осталось только «скопировать» этот участок графика и повторить его с периодом π.

Перечислим свойства функции y = tg x.

1) .
Другими словами, тангенс не определен для где n ∈ Z.
2) Область значений E(y) — все действительные числа.

3) Функция y = tg x — нечетная. Ее график симметричен относительно начала координат.

4) Функция y = tg x — периодическая. Ее наименьший положительный период равен π.

5) Функция y = tg x возрастает при то есть на каждом участке, на котором она непрерывна.

4. График функции y = ctg x строится аналогично. Вот он:

1) .
Другими словами, котангенс не определен для где n ∈ Z.
2) Область значений E(y) — все действительные числа.

3) Функция y = сtg x — нечетная. Ее график симметричен относительно начала координат.

4) Функция y = сtg x — периодическая. Ее наименьший положительный период равен π.

5) Функция y = сtg x убывает при то есть на каждом участке, на котором она непрерывна.

Как в Excel построить синусоиду

Как построить график синусоиды в Excel.

Допустим имеется функция синусоиды, заданной уравнением y=sin4*x. Формула в Excel имеет вид:

=SIN(4*C4)

Требуется построить график функции.

Функция в данном случае непрерывная, поэтому по оси x ограничим интервалом от 1 до -1, шаг возьмём 0,1.

В итоги у нас должна получится таблица вида:

x y=sin4*x
1 -0,75680
0,9 -0,44252
0,8 -0,05837
0,7 0,33499
0,6 0,67546
0,5 0,90930
0,4 0,99957
0,3 0,93204
0,2 0,71736
0,1 0,38942
0,00000
-0,1 -0,38942
-0,2 -0,71736
-0,3 -0,93204
-0,4 -0,99957
-0,5 -0,90930
-0,6 -0,67546
-0,7 -0,33499
-0,8 0,05837
-0,9 0,44252
-1 0,75680

Переходим на вкладку Вставка -> Точечная с гладкими кривыми и маркерами.

Появится область графика, кликаем на белую область правым указателем мыши, выскакивает меню, далее Выбрать данные, появляется окно Выбора источника данных, выбираем весь диапазон данных нашей синусоиды в ячейках, затем Ок.

В итоги у нас получается график вида.

Также вид графика тоже можно настроить через конструктор и дополнительные инструменты.

Читайте также  Как узнать логин и пароль в модеме

Как построить синусоиду

Функция y = sin x

Графиком функции является синусоида.

Полную неповторяющуюся часть синусоиды называют волной синусоиды.

Половину волны синусоиды называют полуволной синусоиды (или аркой).


Свойства функции
y = sin x:

1) Область определения функции – множество действительных чисел.

2) Область значений функции – отрезок [–1; 1]

3) Это нечетная функция.

4) Это непрерывная функция.

5) Координаты точек пересечения графика:
— с осью абсцисс: (πn; 0),
— с осью ординат: (0; 0).

6) На отрезке [-π/2; π/2] функция возрастает, на отрезке [π/2; 3π/2] – убывает.

7) На промежутках [2πn; π + 2πn] функция принимает положительные значения.
На промежутках [-π + 2πn; 2πn] функция принимает отрицательные значения.

8) Промежутки возрастания функции: [-π/2 + 2πn; π/2 + 2πn].
Промежутки убывания функции: [π/2 + 2πn; 3π/2 + 2πn].

9) Точки минимума функции: -π/2 + 2πn.
Точки максимума функции: π/2 + 2πn

10) Функция ограничена сверху и снизу. Наименьшее значение функции –1,
наибольшее значение 1.

11) Это периодическая функция с периодом 2π (Т = 2π)

Для построения графика функции y = sin x удобно применять следующие масштабы:

— на листе в клетку за единицу отрезка примем длину в две клетки.

— на оси x отмерим длину π. При этом для удобства 3,14 представим в виде 3 – то есть без дроби. Тогда на листе в клетку π составит 6 клеток (трижды по 2 клетки). А каждая клетка получит свое закономерное имя (от первой до шестой): π/6, π/3, π/2, 2π/3, 5π/6, π. Это значения x.

— на оси y отметим 1, включающий две клетки.

Составим таблицу значений функции, применяя наши значения x:

Далее составим график. Получится полуволна, наивысшая точка которой (π/2; 1). Это график функции y = sin x на отрезке [0; π]. Добавим к построенному графику симметричную полуволну (симметричную относительно начала координат, то есть на отрезке -π). Гребень этой полуволны – под осью x с координатами (-1; -1). В результате получится волна. Это график функции y = sin x на отрезке [-π; π].

Можно продолжить волну, построив ее и на отрезке [π; 3π], [π; 5π], [π; 7π] и т.д. На всех этих отрезках график функции будет выглядеть так же, как на отрезке [-π; π]. Получится непрерывная волнистая линия с одинаковыми волнами.

Функция y = cos x.

Графиком функции является синусоида (ее иногда называют косинусоидой).

Свойства функции y = cos x:

1) Область определения функции – множество действительных чисел.

2) Область значений функции – отрезок [–1; 1]

3) Это четная функция.

4) Это непрерывная функция.

5) Координаты точек пересечения графика:
— с осью абсцисс: (π/2 + πn; 0),
— с осью ординат: (0;1).

6) На отрезке [0; π] функция убывает, на отрезке [π; 2π] – возрастает.

7) На промежутках [-π/2 + 2πn; π/2 + 2πn] функция принимает положительные значения.
На промежутках [π/2 + 2πn; 3π/2 + 2πn] функция принимает отрицательные значения.

8) Промежутки возрастания: [-π + 2πn; 2πn].
Промежутки убывания: [2πn; π + 2πn];

9) Точки минимума функции: π + 2πn.
Точки максимума функции: 2πn.

10) Функция ограничена сверху и снизу. Наименьшее значение функции –1,
наибольшее значение 1.

11) Это периодическая функция с периодом 2π (Т = 2π)

Функция y = mf(x).

Возьмем предыдущую функцию y = cos x. Как вы уже знаете, ее графиком является синусоида. Если мы умножим косинус этой функции на определенное число m, то волна растянется от оси x (либо сожмется, в зависимости от величины m).
Эта новая волна и будет графиком функции y = mf(x), где m – любое действительное число.

Таким образом, функция y = mf(x) – это привычная нам функция y = f(x), умноженная на m.

Если m 1, то синусоида растягивается от оси x на коэффициент m.

Выполняя растяжение или сжатие, можно сначала построить лишь одну полуволну синусоиды, а затем уже достроить весь график.

Функция y = f(kx).

Если функция y = mf(x) приводит к растяжению синусоиды от оси x либо сжатию к оси x, то функция y = f(kx) приводит к растяжению от оси y либо сжатию к оси y.

Причем k – любое действительное число.

При 0 1, то синусоида сжимается к оси y на коэффициент k.

Составляя график этой функции, можно сначала построить одну полуволну синусоиды, а по ней достроить затем весь график.

Функция y = tg x.

Графиком функции y = tg x является тангенсоида.

Достаточно построить часть графика на промежутке от 0 до π/2, а затем можно симметрично продолжить ее на промежутке от 0 до 3π/2.

Свойства функции y = tg x:

1) Область определения функции – множество всех действительных чисел, кроме чисел вида
x = π/2 + πk, где k – любое целое число.

Это означает, что на графике функции нет точки, принадлежащей прямой x = π/2,
либо прямой x = 3π/2, либо прямой x = 5π/2, либо прямой x = –π/2 и т.д.

2) Область значений функции (–∞; +∞)

3) Это нечетная функция.

4) Это непрерывная функция на интервале (–π/2; π/2).

5) Это периодическая функция с основным периодом π (Т = π)

6) Функция возрастает на интервале (–π/2; π/2).

7) Функция не ограничена ни сверху, ни снизу. Не имеет ни наименьшего, ни наибольшего значений.

Функция y = ctg x

Графиком функции y = ctg x также является тангенсоида (ее иногда называют котангенсоидой).

Свойства функции y = ctg x:

1) Область определения функции – множество всех действительных чисел, кроме чисел вида
x = πk, где k – любое целое число.

2) Область значений функции (–∞; +∞)

3) Это нечетная функция.

4) Это непрерывная функция.

5) Это периодическая функция с основным периодом π (Т = π)

6) Функция убывает в промежутке (πk; π + πk), где k – любое целое число.

7) Функция не ограничена ни сверху, ни снизу. Не имеет ни наименьшего, ни наибольшего значений.

Преобразования графиков тригонометрических функций

Общие принципы преобразования графиков функций изучались нами в главе 8, (см. §47, §48, §50 справочника для 8 класса). В этом параграфе мы рассмотрим особенности тригонометрических функций при использовании этих преобразований.

п.1. Растяжение и сжатие графиков тригонометрических функций по оси OX

Общие принципы растяжения и сжатия графиков по оси OX:

При сравнении графиков двух функций $$ y_1=f(x), y_2=f(frac

), pgt 1 $$ график второй функции растягивается в p раз по оси OX по сравнению с графиком первой функции.

Эти принципы справедливы и для тригонометрических функций.
Тригонометрические функции являются периодическими: синус и косинус с периодом , тангенс и котангенс – с периодом π. Получаем следствие общих принципов:

При сравнении двух тригонометрических функций $$ y_1=f(x), y_2=f(px), pgt 1 $$ период второй функции уменьшается в p раз: $$ T_2=frac

$$

При сравнении двух тригонометрических функций $$ y_1=f(x), y_2=f(frac

), pgt 1 $$ период второй функции увеличивается в p раз: $$ T_2=pT_1 $$

Построим в одной системе координат три графика: $$ f(x)=sinx, g(x)=sin2x, h(x)=sinfrac <2>$$
Период колебаний функции (g(x)=sin2x) в 2 раза меньше: (T_g=frac<2pi><2>=pi).
Период колебаний функции (h(x)=sinfrac<2>) в 2 раза больше: (T_h=2cdot 2pi=4pi).

п.2. Растяжение и сжатие графиков тригонометрических функций по оси OY

Общие принципы растяжения и сжатия графиков по оси OY:

Читайте также  Как убрать угри в домашних условиях

Общий принцип сжатия графиков:

Эти принципы справедливы и для тригонометрических функций.
Т.к. для графиков синуса и косинуса (синусоиды) характерна амплитуда колебаний, то также говорят, что:

  • умножение на параметр (Agt 1) увеличивает амплитуду колебаний в (A) раз;
  • деление на параметр (Agt 1) уменьшает амплитуду колебаний в (A) раз.

Например:

1) Построим в одной системе координат три графика: $$ f(x)=cosx, g(x)=2cosx, h(x)=frac<1><2>cosx $$
Умножение на (A=2) увеличивает амплитуду колебаний в 2 раза.
Область значений функции (g(x)=2cosx: yin[-2;2]). График растягивается по оси OY.
Деление на (A=2) уменьшает амплитуду колебаний в 2 раза. Область значений функции (h(x)=frac12 cosx: yinleft[-frac12; frac12right]). График сжимается по оси OY.

2) Теперь построим $$ f(x)=tgx, g(x)=2tgx, h(x)=frac<1><2>tgx $$
В этом случае хорошей иллюстрацией растяжения по оси OY при умножении и сжатия по оси OY при делении на (A=2) служит поведение функции при (x=fracpi4). $$ fleft(fracpi4right)=tgleft(fracpi4right)=1, gleft(fracpi4right)=2tgleft(fracpi4right)=2, hleft(fracpi4right)=frac12 tgleft(fracpi4right)=frac12 $$ Аналогично – для любого другого значения аргумента x.

п.3. Параллельный перенос графиков тригонометрических функций по оси OX

Общие принципы переноса по оси OX:

Эти принципы справедливы и для тригонометрических функций.
При этом параметр x называют начальной фазой колебаний.
При сравнении двух тригонометрических функций (y_1=f(x)) и (y_2=f(xpm a)) говорят, что у второй функции сдвиг по фазе равен (pm a).

1) Построим в одной системе координат три графика: $$ f(x)=sinx, g(x)=sinleft(x+fracpi4right), h(x)=sinleft(x-fracpi4right) $$
Функция (g(x)=sinleft(x+fracpi4right)) сдвинута на (fracpi4) влево по сравнению с (f(x))
Функция (h(x)=sinleft(x-fracpi4right)) сдвинута на (fracpi4) вправо по сравнению с (f(x))

п.4. Параллельный перенос графиков тригонометрических функций по оси OY

Общие принципы переноса по оси OY:

Эти принципы справедливы и для тригонометрических функций.

1) Построим в одной системе координат три графика: $$ f(x)=sinx, g(x)=sinx+1, h(x)=sinx-1 $$
Функция (g(x)=sinx+1) сдвинута на 1 вверх по сравнению c (f(x))
Функция (h(x)=sinx-1) сдвинута на 1 вниз по сравнению с (f(x))

п.5. Общее уравнение синусоиды

График (y(x)=Acos(cx+d)+B) также называют синусоидой. Термин «косинусоида» употребляется относительно редко.
Поскольку график косинуса получается из графика синуса сдвигом по фазе на π/2 влево, вводить термин «косинусоида» излишне.

Построим график (g(x)=3sinleft(2x+fracpi2right)-1)
По сравнению с (f(x)=sinx):

  • (A=3) — график растянут по оси OY в 3 раза
  • (c=2) — период меньше в 2 раза T=π, график сжат в 2 раза по оси OX
  • (d=fracpi2) – начальная фаза положительная, график сдвинут на (frac<2cdot 2>=fracpi4) влево
  • (B=-1) — график сдвинут по оси OY на 1 вниз

п.6. Общее уравнение тангенцоиды

График (y(x)=Actg(cx+d)+B) также называют тангенцоидой.

Построим график (g(x)=frac12 tgleft(frac<2>-fracpi3right)+1)
По сравнению с (f(x)=tgx):

  • (A=frac12) — график сжат по оси OY в 2 раза
  • (c=frac12) — период больше в 2 раза T=2π, расстояние между асимптотами 2π, график растянут в 2 раза по оси OX
  • (d=-fracpi3) – начальная фаза отрицательная, график сдвинут на (frac<3cdot 1/2>=frac<2pi><4>) вправо
  • (B=1) — график сдвинут по оси OY на 1 вверх

п.7. Примеры

Пример 1. Постройте в одной системе координат графики: $$ f(x)=sinx, g(x)=-sinx, h(x)=cosx $$ Найдите сдвиг по фазе для (g(x)) и (h(x)) в сравнении с (f(x)).

Сдвиг по фазе удобно определять по главной арке синусоиды.
Для (f(x)=sin⁡x) главная арка определена на отрезке (0leq xleq pi)
Для (g(x)=-sin⁡x) главная арка определена на отрезке (-pileq xleq 0), т.е. сдвинута на π влево от (f(x)). Это означает, что: $$ f(x)=g(x+pi), sin⁡x=-sin⁡(x+pi) $$ Для (h(x)=cos⁡x) главная арка определена на отрезке (-fracpi2leq xleq fracpi2), т.е. сдвинута на (fracpi2) влево от (f(x)). Это означает, что: $$ f(x)=hleft(x+fracpi2right), sinx=cosleft(x+fracpi2right) $$

Пример 2. Найдите наименьшие положительные периоды функций:
a) (y=sin5x)
Период синуса (2pi) уменьшается в 5 раз. Получаем: (T=frac<2pi><5>)

б) (y=cospi x)
Период косинуса (2pi) уменьшается в (pi) раз. Получаем: (T=frac<2pi>=2)

в) (y=tgfrac<4>)
Период тангенса (pi) увеличивается в 4 раза. Получаем: (T=4pi)

г) (y=tgleft(2x+frac<3>right))
Период тангенса (pi) уменьшается в 2 раза. Получаем: (T=fracpi2)

Пример 3. Используя правила преобразования графиков функций, постройте график $$ f(x)=2ctgleft(3x+fracpi6right) $$ По сравнению с (g(x)=tg⁡x):

  • (A=2) — график растянут по оси OY в 2 раза
  • (c=3) — период меньше в 3 раза (T=fracpi3), расстояние между асимптотами (fracpi3), график сжат в 3 раза по оси OX
  • (d=-fracpi6) – начальная фаза положительная, график сдвинут на (frac<6cdot 3>=frac<18>) влево

Расположение нулей: $$ tgleft(3x+fracpi6right)=0Rightarrow 3x+fracpi6=pi kRightarrow 3x=-fracpi6+pi kRightarrow x =-frac<18>+frac <3>$$ Вертикального сдвига нет, нули расположены на оси OX.
Расположение асимптот: $$ 3x+fracpi6nefracpi2+pi kRightarrow 3xnefracpi3+pi kRightarrow xnefracpi9+frac <3>$$ Пересечение главной ветви с осью OY: (x=0, y=2tgfracpi6=frac<2>>)
С учетом периода (fracpi3) получаем семейство дополнительных точек для построения графика (left(frac<3>; frac<2>>right)).

Пример 4. Определите графически, сколько корней имеет уравнение на отрезке: a) (sinx=sin2x) при (0leq xleq 3pi)

Ответ: 7 корней

б) (cosfrac<2>=cos2x) при (-2pileq xleq 2pi)

Ответ: 7 корней

Построение графиков тригонометрических функций с использованием MS Excel

Тип урока: урок обобщения и систематизации знаний

Цели:

  • научить строить графики тригонометрических функций средствами MS Excel
  • закрепить навыки работы в электронных таблицах,
  • углубить представления учащихся о взаимосвязи предметов и прикладной ориентации курса информатики.

Если вычислений много, а времени мало, то доверьтесь электронным таблицам

1. Сообщение целей и задач урока

– Ребята, сегодня мы продолжим знакомиться с возможностями электронных таблиц Excel. Давайте вспомним, для чего предназначены электронные таблицы? (Автоматизация расчетов).
– Что вы уже умеете делать в электронных таблицах? (Создавать и форматировать таблицу, работать с типами данных, решать задачи используя относительную и абсолютную ссылки, строить диаграммы).
– На уроках математики вы изучили тригонометрические функции и их графики. При построении графиков тригонометрических функций необходимо учесть множество нюансов. Начертить синусоиду или косинусоиду красиво – это уже искусство, а если необходимо график растянуть, сжать или симметрично отобразить относительно какой-либо оси – это может вызвать затруднения. И здесь нам на помощь нам придут электронные таблицы MS Excel. Вы узнаете как с их помощью быстро и красиво построить график.
Сегодня на уроке мы познакомимся с алгоритмом построения графика тригонометрической функции.
Эпиграфом к уроку я взяла слова «Если вычислений много, а времени мало, то доверьтесь электронным таблицам»

2. Актуализация знаний

Фронтальный опрос (за правильный ответ даем красную карточку)

  1. С чего начинается ввод формулы в ячейку? (Со знака равенства)
  2. На каком языке набирается формула в MS Excel? (Английском)
  3. Как скопировать формулу в другие ячейки?(С помощью маркера автозаполнения)
  4. Как изменить число десятичных знаков после запятой в отображаемом числе? (Выделить, Формат, Ячейки, вкладка Число, Числовой формат, …..)
  5. Что означает запись ###### в ячейке? (Длина водимых данных превышает ширину ячейки)
  6. Каким образом набирается формула, содержащая какую-либо функцию? (Выделить ячейку, в которую нужно вставить первое значение функции;Вставка, Функция, выбрать Категорию и саму функцию)
  7. Каким образом набирается формула, содержащая сложную функцию, например, y = |x 2 |? (Вставляется внешняя функция с пустым аргументом, затем левее строки редактирования формул из раскрывающегося списка выбирается внутренняя функция)
  8. Как вставить какой-либо символ, например, математический в ячейку? (Вставка, Символ, в появившемся диалоговом окне выбрать шрифт Symbol и нужный символ)

На прошлом уроке вы строили графики элементарных функций. Давайте повторим алгоритм построения графика (Учащиеся называют шаги построения графика функции, а учитель показывает соответствующий пункт алгоритма на доске (используется проектор) и если необходимо дополняет ответ учеников) (см. Приложение 1).

3. Изучение нового

С использованием презентации (см. Приложение 2) учитель рассказывает, как строится график тригонометрической функций, а затем выполняет его построение в электронных таблицах.

Задание. Построить в MS Excel графики функций y = Sin x и y = |1 – sin x| на промежутке [–360 о ; 360 о ] с шагом 15 о .

4. Закрепление полученных знаний

Каждому ученику даётся карточка с заданием и оценочный лист, который после выполнения задания отдается учителю (Каждый пункт в оценочном листе является шагом построения графика тригонометрической функции с использованием MSExcel). Презентация находится в сетевой папке, и любой ученик может ею воспользоваться при выполнении своего задания.

Задание. Построить в MS Excel графики функций на промежутке [–36 о ;36 о ] с шагом 15 о .

5. Проверка построенных графиков и разбор нюансов

Один из учеников строил график y = |Sin x| / Sin x на промежутке [–360 о ;360 о ] с шагом 15 о . На доске демонстрируется этот график и график, построенный традиционным алгебраическим способом.

С помощью этого примера обращается внимание учащихся, что существуют функции, графики которых в электронных таблицах строятся неточно. Учащихся можно попросить найти неточности в графике, построенном с помощью MS Excel и попросить объяснить их.

График, построенный традиционным алгебраическим

График, построенный с использованием МS Exel

6. Подведение итогов

Учеников просят ответить на вопросы:

  1. В чем достоинства и недостатки алгебраического метода построения графиков функций и построения графиков с использованием электронных таблиц?
  2. Каким образом можно использовать полученные на уроке знания в учебе?

Вывод. MS Excel облегчает построение графиков функций, но без глубоких математических знаний построить точные графики сложных функций (тригонометрических функций, функций с модулем, функций имеющих точки разрыва) невозможно.

Математика – это царица всех наук!

7. Постановка Д/З.

Построить график функции y= 1 + 0,5*ctg(X–П/4) на промежутке [–360 о ;360 о ] с шагом 15 о .

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: