Как построить симметричную точку

ВИДЫ СИММЕТРИИ

СИММЕТРИЯ ОТНОСИТЕЛЬНО ПРЯМОЙ (ОСЕВАЯ СИММЕТРИЯ)

Одна точка называются симметричной другой относительно прямой, если данная прямая проходит через середину отрезка, соединяющего эти точки, и перпендикулярна к этому отрезку. Каждая точка прямой а считается симметричной самой себе. Прямая называется осью симметрии фигуры если каждая точка фигуры симметрична относительно некоторой точки той же фигуры.

зеркальная симметрия

Геометрическая фигура называется симметричной относительно плоскости S, если для каждой точки этой фигуры может быть найдена другая точка этой же фигуры, так что отрезок, соединяющий эти точки, перпендикулярен плоскости S и делится этой плоскостью пополам. Плоскость S называется плоскостью симметрии.

Симметричные фигуры, предметы и тела не равны друг другу в узком смысле слова (например, левая перчатка или ботинок не подходит для правой руки или ноги и наоборот). Они называются зеркально равными.

центральная симметрия

Две точки называются симметричными относительно центра симметрии О, если О — середина отрезка, соединяющего эти точки. Точка О считается симметричной самой себе.

Геометрическая фигура (или тело) называется симметричной относительно центра О, если для каждой точки этой фигуры может быть найдена другая точка этой же фигуры, так что отрезок, соединяющий эти точки, проходит через центр О и делится в этой точке пополам. Точка О называется центром симметрии.

поворотная симметрия (симметрия вращения)

При поворотной симметрии переход частей фигуры в новое положение или преобразование исходной фигуры происходит при повороте фигуры на определенный угол вокруг точки, которая называется центром поворота. Поворотная симметрия может рассматриваться на плоскости и в пространстве.

Тело (фигура) обладает симметрией вращения, если при повороте на угол 360°/n (n – целое число, например, 2, 3, 4 и т.д. до бесконечности) вокруг некоторой прямой (оси симметрии) оно полностью совпадает со своим начальным положением. При n = 2 мы имеем осевую симметрию.

симметрия подобия

Представляет собой своеобразный аналог предыдущих симметрий с той лишь разницей, что она связана с одновременным уменьшением или увеличением подобных частей фигуры и расстояний между ними. Простейшим примером такой симметрии являются матрешки.

переносная (трансляционная симметрия)

О такой симметрии говорят тогда, когда при переносе фигуры вдоль прямой на какое-то расстояние, либо расстояние, кратное этой величине, она совмещается сама с собой. Прямая, вдоль которой производится перенос, называется осью переноса.

примеры симметрии геометрических фигур

Разными видами симметрии могут обладать и плоские и объемные фигуры. Например, квадрат, прямоугольник, ромб имеют и центр симметрии и оси симметрии.

Окружность и круг имеют центр симметрии и бесконечно много осей симметрии. Объемные фигуры могут иметь центр симметрии, оси симметрии и обладать зеркальной симметрией.

Правильные многогранники своей симметрией с древних времён привлекали к себе внимание учёных, архитекторов, художников. Их по праву называют самыми симметричными из всех многогранников.

Подробно описал свойства правильных многогранников древнегреческий учёный Платон. Поэтому их называют телами Платона. Правильным многогранникам посвящена 13 книга “Начал” Евклида.

Очень симметричной фигурой является, например, куб. Центром симметрии куба является точка пересечения его диагоналей. Через центр симметрии проходят 9 осей симметрии. Плоскостей симметрии у куба также 9 и проходят они либо через противоположные ребра (6), либо через середины противоположных ребер (3).

Через центр симметрии проходят 9 осей симметрии. Плоскостей симметрии у куба также 9 и проходят они либо через противоположные ребра (6), либо через середины противоположных ребер (3).

ОСНОВЫ НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ и инженерной графики

Симметричные точки относительно плоскости находятся на одном перпендикуляре к плоскости по разные стороны от неё и на одинаковом расстоянии. Независимо от способа преобразования перпендикуляр должен быть спроецирован в натуральную величину. Он должен стать параллельным плоскости проекций. Для этого плоскость симметрии надо перевести в положение плоскости уровня.

Пример решения способом замены плоскостей проекций (рис.19):

1. Строим треугольник ABC и точку D.

2. Задаём горизонталь h(1,C) в плоскости треугольника.

3. Проецируем заданную фигуру на новую плоскость проекций П4 ^ h. На чертеже новая ось проекций x14 ^ h1.

4. Строим искомую точку D/, начиная с проекции D/4 при условии: D/4К4= К4D4, где К есть точка пересечения прямой и плоскости.

5. Строим отрезок D4D/4.

6. Определяем видимость отрезка DD/ относительно треугольника.

КОМПЛЕКСНЫЙ ЧЕРТЕЖ НА ПРИМЕРЕ ИЗОБРАЖЕНИЯ ТОЧКИ

Геометрический аппарат проецирования и метод Г. Монжа получения обратимых изображений

В начертательной геометрии и в черчении для построения изображений в основном используется один из методов проецирования. Когда направление взгляда наблюдателя перпендикулярно к плоскости проекций, относительно которой сам наблюдатель условно находится на бесконечно удаленном расстоянии (Рис.3). Проецирующий луч от глаза наблюдателя проходит через точку какой-либо фигуры в пространстве и пересекает плоскость проекций , образуя ортогональную (прямоугольную) проекцию . (Символически: ).

Однако – еще не чертеж. Чертеж должен читаться однозначно, то есть должен быть обратимым. В данном случае проекции может соответствовать не только точка , но и любая точка , принадлежащая проецирующему лучу l. В итоге: , но .

Способ получения обратимых изображений был предложен создателем начертательной геометрии как науки Гаспаром Монжем (1746-1818). Для этого оказалось достаточно: предмет спроецировать одновременно на две плоскости проекций. Например, — на две взаимно перпендикулярные плоскости: – горизонтальную и – фронтальную плоскости проекций (Рис.4). В этом случае на лицо обратимость и .

Для усиления наглядности изображений и для решения многих геометрических задач часто приходится проецировать предмет на три плоскости: , и . Последняя из них – профильная плоскость проекций (Рис.5).

Линии пересечения плоскостей проекций называются осями проекций. На этих осях происходит излом линий связи между отдельными проекциями точек. Звенья ломаных линий отражают расстояния точки в пространстве до соответствующих плоскостей проекций. Если оси проекций совместить с осями ортогональной системы координат , то эти расстояния примут свои численные значения. (Рис.4 и 5).

Плоскости проекций делят пространство на 4 квадранта плоскостями и и на 8 октантов – тремя плоскостями (Рис.4 и 5). От положения точки в той или иной части пространства зависят знаки её координат. Например, в I-м квадранте (Рис.4) все координаты положительны, во 2-м – координата уже отрицательна.

Что касается положения наблюдателя относительно плоскостей проекций: место наблюдателя или в 1-м квадранте или в 1-м октанте.

Пока мы получили только пространственные модели обратимых комплексных изображений на двух и на трех плоскостях проекций.

Осевая симметрия — виды, свойства и примеры фигур

Что такое осевая симметрия? Само слово «симметрия» имеет греческие корни и говорит о существующем определенном порядке расположения частей некого предмета, а также о его соразмерности.

Под симметрией понимается такое качество предметов, что их можно совместить друг с другом при некоторых преобразованиях.

Что такое симметрия

Наиболее часто это понятие встречается в геометрии. Объект считается симметричным, если после некоторых геометрических преобразований он смог сохранить свои первоначальные свойства.

В качестве примера стоит рассмотреть обычный круг. Если его вращать вокруг условного центра, он сохранит свою форму и первоначальные характеристики. Поэтому этот геометрический предмет смело можно назвать симметричным.

Читайте также  Как отключить смс в телефоне

Виды симметрии определяются возможными преобразованиями для данного объекта и его свойствами, которые в результате проведенных манипуляций должны сохраниться. В случае, когда это условие не соблюдается, можно утверждать о наличии асимметрии.

Рис. 1 Фигуры, обладающие симметричностью

Центральная симметрия

Это явление относительно некой точки. Она представляет собой преобразование множества точек пространства или поверхности, во время которого ее центр всегда постоянен и не меняет своего положения.

Данный вид симметрии предполагает, что на равном расстоянии от ее центра располагаются два предмета, например, две точки. Если провести между ними условную прямую, они будут располагаться на ее противоположных концах, а середина этой прямой и будет являться осевым центром.

Если считать центр неподвижным и начать преобразовывать прямую (т. е. вращать ее относительно центральной точки), то точки на ее концах опишут две кривые. Все точки одной кривой будут иметь такие же симметричные точки на другой кривой.

Объекты, обладающие центром симметрии, представляют большой интерес для ученых. В геометрии насчитывается достаточно много таких объектов. К ним относятся прямые, отрезки, окружность, прямоугольник и др. Центрально симметричные объекты встречаются и в природе.

Рис. 2 Графическое представление центральной симметрии

Осевая симметрия

Это симметрия относительно прямой. В данном классе две точки симметричны относительно некой прямой, если она пересекает центр отрезка, соединяющего эти две точки и является перпендикуляром к нему. Любая точка прямой симметрична сама себе.

Рис. 3 Наглядное представление осевой симметрии

Объект симметричен относительно прямой, если все его точки имеют такие же симметричные аналоги относительно этой прямой. Она же — центр симметрии.

В качестве наглядно примера можно взять обычный бумажный лист, если его сложить пополам. Если через линию сгиба провести прямую – это и будет центром.

Определенная точка одной половины листы имеет такую же симметричную точку на другой его части, расположенную на перпендикуляре на таком же расстоянии от осевой линии. Одна часть листа тетради является по сути зеркальным отображением другой.

Рис. 4 Примеры осевой симметрии

Фигуры, имеющие несколько осей симметрии

Есть предметы и геометрические фигуры с некоторым числом осей. Для начала в качестве примера стоит рассмотреть прямоугольник и ромб, которые имеют две такие оси.

Две оси симметрии характерны для прямоугольника. Это прямые, которые проведены через точки, являющиеся серединами его противоположных сторон.

То же самое (наличие двух осей) присуще и ромбу. Оси являются прямыми, содержащими диагонали данной геометрической фигуры.

Интерес представляет и квадрат, у которого насчитывается четыре оси. Данная фигура является одновременно и ромбом, и прямоугольником. Остальные виды параллелограммов не имеют осей симметрии вообще.

Рис. 5 Оси симметрии ромба

Единственной фигурой, у которой есть три оси симметрии, является равносторонний треугольник. Они представляют собой не что иное, как его медианы, линии соединяющие середины его сторон. Медианы равностороннего треугольник – это его и биссектрисы, и высоты.

Рис. 6 Оси симметрии равностороннего треугольника

В обычной жизни многие даже не задумываются о том, как часто они сталкиваются с различными видами симметрии. Это понятие характерно не только для мира математики.

Симметрия встречается в мире природы, архитектуре, в мире искусства и композиции, а также в других сферах человеческой жизни.

Осознание данного факта прошло долгий путь во времени, над ним задумывались великие умы на протяжении многих столетий. С древних времен и до настоящего времени определение этого понятия прошло долгий путь развития.

Урок геометрии в 7 классе по теме: « Построение точки симметричной относительно центра и оси симметрии»

Цель урока:

сформировать понятия центральной и осевой симметрии, строить симметричные точки относительно центра и относительно оси.

Задачи:

научить обучающихся определять центр и ось симметрии в геометрических фигурах, строить симметричные точки относительно центра и относительно оси ;

развивать геометрическое мышление обучающихся, навыки работы с чертежными инструментами;

воспитывать чувство прекрасного, интерес к предмету геометрии.

Тип урока: изучение нового материала.

Формы работы учащихся: фронтальная, работа в парах, самостоятельная.

Необходимое техническое оборудование: интерактивная доска, проектор, компьютер, набор карточек, таблички для рефлексии.

Просмотр содержимого документа
«Урок геометрии в 7 классе по теме: « Построение точки симметричной относительно центра и оси симметрии»»

МБОУ «Бардымская специальная(коррекционная) общеобразовательная

школа – интернат »

Урок геометрии в 7 классе по теме:

« Построение точки симметричной относительно центра и оси симметрии»

Учитель математики

Акова Дания Ганиевна

с.Барда, 2017

сформировать понятия центральной и осевой симметрии, строить симметричные точки относительно центра и относительно оси.

научить обучающихся определять центр и ось симметрии в геометрических фигурах, строить симметричные точки относительно центра и относительно оси ;

развивать геометрическое мышление обучающихся, навыки работы с чертежными инструментами;

воспитывать чувство прекрасного, интерес к предмету геометрии.

Тип урока: изучение нового материала.

Формы работы учащихся: фронтальная, работа в парах, самостоятельная.

Необходимое техническое оборудование: интерактивная доска, проектор, компьютер, набор карточек, таблички для рефлексии.

Ход урока I. Организационный момент.

– Древняя китайская мудрость гласит:

“Я слышу – я забываю,
я вижу – я запоминаю,
я делаю – я понимаю”.

Чтобы наш урок был плодотворным, давайте последуем совету китайских мудрецов и будем работать по принципу: “Я слышу – я вижу – я делаю”.

Ребята, прежде чем начать урок, проверим, с каким настроением вы сегодня пришли? Покажите одну из трех карточек, лежащих у вас на партах. (Слайд 2).

II. Теоретическая самостоятельная работа.

Заполните таблицу, отметив знаки «+» (да) и «-» (нет). (Слайды 3-4) Один из обучающихся работает на обратной стороне доски, остальные – в своих тетрадях. После завершения работы класс проверяет работу, выполненную обучающимся на доске.

III. Изучение нового материала.

Тема сегодняшнего урока «Построение точки симметричной относительно центра и оси симметрии». (Слайд 5-6)

«Симметрия является той идеей, с помощью которой человек веками пытается объяснить и создать порядок, красоту и совершенство» Герман Вейль

В древности слово «СИММЕТРИЯ» употреблялось в значении «гармония», «красота».

В переводе с греческого это слово означает « одинаковость в расположении частей» (Слайд 7)

Сейчас выполним практическую работу:

(Слайд 8). Отметьте точку Аа. Из точки А опустите перпендикуляр АО на прямую а. Теперь от точки О отложите перпендикуляр ОА1= АО. Две точки А и А1 называются симметричными относительно прямой а. Такая прямая называется осью симметрии. (Учитель строит на доске, ученики в тетрадях).

(Слайд 9). Симметричность предметов относительно прямой в жизни.

– У геометрических фигур может быть одна или несколько осей симметрии, а может и не быть совсем. А как вы думаете, сколько осей симметрии у прямоугольника?

(Прямоугольник имеет 2 оси симметрии) (Слайд 10).

– А у круга? (Круг имеет бесконечно много осей симметрии) (Слайд 11).

– Мысленно определите, сколько осей симметрии имеет каждая из фигур? (Слайд 12). Проверим. (Слайд 13)

Читайте также  Как научить говорить букву Ш

– Симметричными могут быть не только точки, но и различные геометрические фигуры. Давайте посмотрим треугольник, симметричный треугольнику, который изображён на рисунке.

– Назовите фигуры, обладающие осевой симметрией. Назовите фигуры, которые не имеют оси симметрии. (Параллелограмм, разносторонний треугольник).

– (Слайд 15). Оказывается, можно построить симметричные точки не только относительно прямой, но и относительно какой-либо точки. Возьмём произвольную точку А и точку О, относительно которой будем строить симметричную точку. Соединяем точки А и О отрезком, затем от точки О откладываем отрезок ОА1=ОА. Таким образом, О – середина отрезка АА1. Точки А и А1 называются симметричными относительно точки О.

(Слайд 16) А теперь посмотрим треугольник А1В1С1 симметричный треугольнику АВС относительно точки О.

– Приведите примеры фигур, обладающие центральной симметрией. (Слайд 17. Существуют фигуры, обладающие осевой и центральной симметриями. Назовите такие фигуры. (Слайд 18).

IV. Физкультминутка.

Встаньте, улыбнитесь. Возьмитесь за руки. Передайте своему товарищу положительные эмоции, поделитесь капелькой теплоты, добра.

Хочу я, чтоб тепло к тебе пришло
Как свет весенний, как тепло костра:
Пусть для тебя источником добра
Не станет то, что для другого – зло. (Слайд 19)

V. Закрепление изученного материала.

Какие из следующих букв имеют ось симметрии:

А, Б, Г, Е, О, F. (Слайд 20)

2. Симметричный алфавит посмотрим. (Слайд 21)

Задание для самостоятельной работы:

– (Слайд 22) Расположите данные фигуры по трем столбикам таблицы «Фигуры, обладающие центральной симметрией», «Фигуры, обладающие осевой симметрией», «Фигуры, имеющие обе симметрии». (Обучающиеся выполняют это задание в рабочих тетрадях.) А теперь проверим полученные результаты. (Слайд 23)

Теперь постройте точку А симметричную точке В относительно центра и оси симметрии.

VI. Просмотр презентации. (Слайды 24-36)

VII. Рефлексия. (Слайд 37)

– С каким настроением вы уйдете с урока? Покажите одну из трех карточек.

VIII. Подведение итогов.

Что нового, интересного вы узнали сегодня на уроке? Что понравилось в уроке? Что не понравилось? Оценки за урок.

IX. Домашнее задание.

Стр.242, №819. (Слайд 38)

– На этом урок окончен. Спасибо за работу на уроке. До свидания!

Осевая симметрия — виды, свойства и примеры фигур

Что такое осевая симметрия? Само слово «симметрия» имеет греческие корни и говорит о существующем определенном порядке расположения частей некого предмета, а также о его соразмерности.

Под симметрией понимается такое качество предметов, что их можно совместить друг с другом при некоторых преобразованиях.

Что такое симметрия

Наиболее часто это понятие встречается в геометрии. Объект считается симметричным, если после некоторых геометрических преобразований он смог сохранить свои первоначальные свойства.

В качестве примера стоит рассмотреть обычный круг. Если его вращать вокруг условного центра, он сохранит свою форму и первоначальные характеристики. Поэтому этот геометрический предмет смело можно назвать симметричным.

Виды симметрии определяются возможными преобразованиями для данного объекта и его свойствами, которые в результате проведенных манипуляций должны сохраниться. В случае, когда это условие не соблюдается, можно утверждать о наличии асимметрии.

Рис. 1 Фигуры, обладающие симметричностью

Центральная симметрия

Это явление относительно некой точки. Она представляет собой преобразование множества точек пространства или поверхности, во время которого ее центр всегда постоянен и не меняет своего положения.

Данный вид симметрии предполагает, что на равном расстоянии от ее центра располагаются два предмета, например, две точки. Если провести между ними условную прямую, они будут располагаться на ее противоположных концах, а середина этой прямой и будет являться осевым центром.

Если считать центр неподвижным и начать преобразовывать прямую (т. е. вращать ее относительно центральной точки), то точки на ее концах опишут две кривые. Все точки одной кривой будут иметь такие же симметричные точки на другой кривой.

Объекты, обладающие центром симметрии, представляют большой интерес для ученых. В геометрии насчитывается достаточно много таких объектов. К ним относятся прямые, отрезки, окружность, прямоугольник и др. Центрально симметричные объекты встречаются и в природе.

Рис. 2 Графическое представление центральной симметрии

Осевая симметрия

Это симметрия относительно прямой. В данном классе две точки симметричны относительно некой прямой, если она пересекает центр отрезка, соединяющего эти две точки и является перпендикуляром к нему. Любая точка прямой симметрична сама себе.

Рис. 3 Наглядное представление осевой симметрии

Объект симметричен относительно прямой, если все его точки имеют такие же симметричные аналоги относительно этой прямой. Она же — центр симметрии.

В качестве наглядно примера можно взять обычный бумажный лист, если его сложить пополам. Если через линию сгиба провести прямую – это и будет центром.

Определенная точка одной половины листы имеет такую же симметричную точку на другой его части, расположенную на перпендикуляре на таком же расстоянии от осевой линии. Одна часть листа тетради является по сути зеркальным отображением другой.

Рис. 4 Примеры осевой симметрии

Фигуры, имеющие несколько осей симметрии

Есть предметы и геометрические фигуры с некоторым числом осей. Для начала в качестве примера стоит рассмотреть прямоугольник и ромб, которые имеют две такие оси.

Две оси симметрии характерны для прямоугольника. Это прямые, которые проведены через точки, являющиеся серединами его противоположных сторон.

То же самое (наличие двух осей) присуще и ромбу. Оси являются прямыми, содержащими диагонали данной геометрической фигуры.

Интерес представляет и квадрат, у которого насчитывается четыре оси. Данная фигура является одновременно и ромбом, и прямоугольником. Остальные виды параллелограммов не имеют осей симметрии вообще.

Рис. 5 Оси симметрии ромба

Единственной фигурой, у которой есть три оси симметрии, является равносторонний треугольник. Они представляют собой не что иное, как его медианы, линии соединяющие середины его сторон. Медианы равностороннего треугольник – это его и биссектрисы, и высоты.

Рис. 6 Оси симметрии равностороннего треугольника

В обычной жизни многие даже не задумываются о том, как часто они сталкиваются с различными видами симметрии. Это понятие характерно не только для мира математики.

Симметрия встречается в мире природы, архитектуре, в мире искусства и композиции, а также в других сферах человеческой жизни.

Осознание данного факта прошло долгий путь во времени, над ним задумывались великие умы на протяжении многих столетий. С древних времен и до настоящего времени определение этого понятия прошло долгий путь развития.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: