Как найти радиус кривизны траектории

Как найти радиус кривизны траектории

Рассмотрим плоскую кривую, заданную уравнением (y = fleft( x right).) Пусть в точке (Mleft( right)) проведена касательная к данной кривой, которая образует угол (alpha) с осью абсцисс (рисунок (1)). При смещении (Delta s) вдоль дуги кривой точка (M) переходит в точку (.) При этом положение касательной также изменяется: угол наклона касательной к оси (Ox) в точке () будет составлять (alpha + Deltaalpha.) Таким образом, при смещении точки кривой на расстояние (Delta s) касательная поворачивается на угол (Deltaalpha.) (Будем считать, что угол (alpha) возрастает при вращении против часовой стрелки.)

Абсолютное значение отношения (largefrac<><>normalsize) называется средней кривизной дуги (M.) В пределе, при (Delta s to 0,) мы получаем кривизну кривой в точке (M:) [K = limlimits_ left| ><>> right|.] Из приведенного определения следует, что кривизна в какой-либо точке кривой характеризует скорость вращения касательной в этой точке.

Для плоской кривой (y = fleft( x right)) кривизна в точке (Mleft( right)) выражается через первую и вторую производные функции (fleft( x right)) по формуле [K = frac <right|>> <<<right)>^2>> right]>^<2>normalsize>>>>.] Если кривая задана в параметрической форме уравнениями (x = xleft( t right),) (y = yleft( t right),) то ее кривизна в произвольной точке (Mleft( right)) равна [K = frac <right|>> <<<right)>^2> + <right)>^2>> right]>^<2>normalsize>>>>.] В случае, если кривая задана полярным уравнением (r = rleft( theta right),) кривизна находится по формуле [K = frac <+ 2 <right)>^2> — rr»> right|>> <<<+ <right)>^2>> right]>^<2>normalsize>>>>.] Радиусом кривизны кривой в точке (Mleft( right)) называется величина, обратная кривизне (K) данной кривой в рассматриваемой точке: [R = frac<1>.] Следовательно, для плоских кривых, заданных явным уравнением (y = fleft( x right),) радиус кривизны в точке (Mleft( right)) будет определяться выражением [R = frac <<<right)>^2>> right]>^<2>normalsize>>>> <right|>>.]

Очевидно, достаточно найти кривизну эллипса в точках (Aleft( right)) и (Bleft( <0,b>right)) (рисунок (2)), поскольку в силу симметрии кривой кривизна в двух противоположных вершинах эллипса будет такой же.

Для расчета кривизны удобно перейти от канонического уравнения эллипса к уравнению в параметрической форме : [x = acos t,;;;y = bsin t.] где (t) − параметр. В точке (Aleft( right)) параметр имеет значение (t = 0,) а в точке (Bleft( <0,b>right)) его значение равно (t = largefrac<2>normalsize.)

Данная функция достигает максимума в точках (x = largefrac<<2pi n>>normalsize,;n in Z.) В силу периодичности кривизна во всех точках максимума одинакова, поэтому достаточно рассмотреть лишь точку (x = 0).

В данном случае точка (x = 0) является точкой перегиба функции (y = arctan x.) Поскольку в точке перегиба вторая производная равна нулю, то кривизна здесь также должна быть равна нулю, что и показывает полученное решение.

Экспоненциальная функция (y = ) − это единственная уникальная функция, у которой производные любого порядка равны самой функции. Поэтому для кривизны данной кривой можно сразу написать следующую формулу: [ right|>> <<<right)>^2>> right]>^<2>normalsize>>>> > = >><<<>> right)>^<2>normalsize>>>>.> ] Знак модуля в числителе опущен, поскольку экспоненциальная функция всегда положительна.

Физика

При криволинейном движении тела направление вектора скорости совпадает с направлением касательной, проведенной к той точке траектории движения тела, где оно находится в этот момент.

Величина скорости в произвольный момент времени

Модуль скорости тела v , брошенного под углом α к горизонту в поле силы тяжести Земли, в произвольный момент времени рассчитывается по теореме Пифагора:

v = v x 2 + v y 2 ,

где v x и v y — проекции скорости на соответствующие координатные оси:

1) для тела, брошенного с высоты h под углом α к горизонту ( вверх ) (см. рис. 1.27):

v x = v 0 cos α = const,

v y = v 0 sin α − gt ;

2) для тела, брошенного с высоты h под углом α к горизонту ( вниз ) (см. рис. 1.28):

v x = v 0 cos α = const,

v y = − v 0 sin α − gt ;

3) для тела, брошенного под углом α к горизонту с поверхности Земли (см. рис. 1.29):

v x = v 0 cos α = const,

v y = v 0 sin α − gt ;

4) для тела, брошенного с высоты h горизонтально (см. рис. 1.30):

v x = v 0 = const,

где v 0 — начальная скорость; t — время движения; g — ускорение свободного падения.

Угол между вектором скорости и линией горизонта

Угол β, который составляет вектор скорости с горизонтом в произвольный момент времени (рис. 1.31),

tg β = | v y | v x ,

где v x и v y — проекции скорости на соответствующие координатные оси:

1) для тела, брошенного с высоты h под углом α к горизонту ( вверх ) (см. рис. 1.27):

v x = v 0 cos α = const,

v y = v 0 sin α − gt ;

2) для тела, брошенного с высоты h под углом α к горизонту ( вниз ) (см. рис. 1.28):

v x = v 0 cos α = const,

v y = − v 0 sin α − gt ;

3) для тела, брошенного под углом α к горизонту с поверхности Земли (см. рис. 1.29):

v x = v 0 cos α = const,

v y = v 0 sin α − gt ;

4) для тела, брошенного с высоты h горизонтально (см. рис. 1.30):

v x = v 0 = const,

где v 0 — начальная скорость; t — время движения; g — ускорение свободного падения.

Расстояние между телами, движущимися в поле силы тяжести

Если рассматривается движение двух тел (рис. 1.32), то расстояние между телами ∆ r определяется c помощью выражения

Δ r = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 = ( Δ x ) 2 + ( Δ y ) 2 ,

где x 1 , y 1 — координаты положения первого тела в определенный момент времени; x 2 , y 2 — координаты положения второго тела в этот же момент времени.

Пример 20. Камень брошен с башни под углом 45° к горизонту со скоростью 15 м/с. Через какой интервал времени вектор скорости составит с горизонтом угол 30°?

Решение. Угол, который вектор скорости составит с горизонтом, определяется формулой

tg β = | v y | v x ,

где v x и v y — проекции вектора скорости на координатные оси; для данного случая указанные проекции определяются формулами

v x = v 0 cos α = 15 cos 45 ° = 7,5 2 ,

v y = v 0 sin α − g t = 15 sin 45 ° − 10 t = 7,5 2 − 10 t .

Подстановка v x и v y в исходную формулу дает уравнение

tg β = tg 30 ° = | 7,5 2 − 10 t | 7,5 2 = 1 3 , или 1 3 = | 7,5 2 − 10 t | 7,5 2 .

Данное уравнение содержит модуль разности двух величин ( 7,5 2 ) и (10 t ); следовательно, оно эквивалентно двум независимым уравнениям:

1 3 = 1 − 10 t 7,5 2 и 1 3 = 10 t 7,5 2 − 1 .

Корень первого уравнения t 1 ≈ 0,45 c соответствует подъему тела; корень второго уравнения t 2 ≈ 1,67 c соответствует падению тела после его поднятия на максимальную высоту.

Пример 21. С башни высотой 40 м одновременно бросают два мяча: один — горизонтально со скоростью 10 м/с, другой — под углом 30° к горизонту (вниз) с той же скоростью. Найти расстояние между мячами спустя 1,0 с.

Решение. Уравнения движения первого мяча запишем в виде:

x 1 ( t ) = v 0 t = 10 t ; y 1 ( t ) = h − g t 2 2 = 40 − 5 t 2 . >

Уравнения движения второго мяча —

x 2 ( t ) = v 0 t cos α = 10 t cos 30 ° = 5 t 3 ; y 2 ( t ) = h − v 0 t sin α − g t 2 2 = 40 − 5 t − 5 t 2 . >

Разность координат определяется формулами

Δ x = | x 2 − x 1 | = 10 t ( 1 − 0,5 3 ) ;

Δ y = | y 2 − y 1 | = 5 t .

Подстановка указанного в условии задачи значения времени t = 1,0 c в записанные уравнения позволяет вычислить значения ∆ x и ∆ y :

Δ x = 10 ⋅ 1,0 ⋅ ( 1 − 0,5 3 ) ≈ 1,4 м;

Δ y = 5 ⋅ 1,0 ≈ 5,0 м.

На рисунке показаны положения мячей в указанный момент времени.

Расстояние между мячами вычислим по теореме Пифагора:

Δ r = ( Δ x ) 2 + ( Δ y ) 2 =

= ( 1,4 ) 2 + ( 5,0 ) 2 ≈ 5,2 м.

Пример 24. Вычислить радиус кривизны траектории тела, брошенного под углом 30° к горизонту с начальной скоростью 10 м/с спустя 0,8 с после начала полета.

Решение. Радиус кривизны траектории определим по формуле

где v = v x 2 + v y 2 — величина скорости тела в указанный момент времени; v x = v 0 cos 30 ° = 5 3 м/с — проекция скорости на горизонтальную ось; v y = v 0 sin 30 ° − g t = − 3 м/с — проекция скорости на вертикальную ось; a n = g sin β — величина нормальной составляющей ускорения тела, β = 90 ° − γ .

На рисунке показаны соответствующие углы, векторы скорости и ускорения тела.

Тангенс угла γ можно определить с помощью формулы

tg γ = | v y | v x = | − 3 | 5 3 = 0,2 3 = 0,3464 ,

что соответствует γ ≈ 20°.

Тогда угол β = 90 ° − γ = 90 ° − 20 ° = 70 ° , а величина нормального ускорения имеет значение:

a n = g sin β = 10 sin 70 ° ≈ 10 ⋅ 0,94 = 9,4 м/с 2 .

Модуль скорости тела рассчитаем, используя значения ее проекций для указанного момента времени:

v = v x 2 + v y 2 = ( 5 3 ) 2 + ( − 3 ) 2 ≈ 9,2 м/с.

Полученные значения скорости и нормального ускорения позволяют вычислить искомый радиус кривизны траектории:

R = v 2 a n = ( 9,2 ) 2 9,4 ≈ 9,0 м.

Пример 25. Вычислить нормальное ускорение тела, брошенного под углом 60° к горизонту с поверхности Земли, в момент падения тела на Землю.

Решение. Если сопротивление воздуха отсутствует, то траекторией движения тела является симметричная парабола.

Углы α и β, показанные на рисунке, равны между собой:

Величина нормального ускорения определяется формулой

Теоретическая механика:
Кинематика точки

Смотрите также решения задач по теме «Кинематика точки» в онлайн решебниках Яблонского, Мещерского, Чертова (с примерами и методичкой для заочников), Иродова и Савельева.

В этой главе в основном рассмотрены методы решения задач, в которых закон движения точки выражен так называемым естественным способом: уравнением s=f(t) по заданной траектории *.

* Решения задач, в которых закон движения задан координатным способом, рассмотрены в конце главы (§ 31).

В этом случае главными параметрами, характеризующими движение точки но заданной траектории, являются: s – расстояние от заданного начального положения и t – время.

Величина, характеризующая в каждый данный момент времени направление и быстроту движения точки, называется скоростью (v на рис. 192). Вектор скорости всегда направлен вдоль касательной в ту сторону, куда движется точка. Числовое значение скорости в любой момент времени выражается производной от расстояния по времени:
v = ds/dt или v = f'(t).

Ускорение a точки в каждый данный момент времени характеризует быстроту изменения скорости. При этом нужно отчетливо понимать, что скорость – вектор, и, следовательно, изменение скорости может происходить по двум признакам: по числовой величине (по модулю) и по направлению.

Быстрота изменения модуля скорости характеризуется касательным (тангенсальным) ускорением at – составляющей полного ускорения a, направленной по касательной к траектории (см. рис. 192).

Числовое значение касательного ускорения в общем случае определяется по формуле
at = dv/dt или at = f»(t).

Быстрота изменения направления скорости характеризуется центростремительным (нормальным) ускорением an – составляющей полного ускорения a, направленного по нормали к траектории в сторону центра кривизны (см. рис. 192).

Числовое значение нормального ускорения определяется в общем случае по формуле
an = v 2 /R,
где v – модуль скорости точки в данный момент;
R – радиус кривизны траектории в месте, где находится точка в данный момент.

Читайте также  Как прошить стиральную машину

После того как определены касательное и нормальное ускорения, легко определить и ускорение a ( полное ускорение точки ).

Так как касательная и нормаль взаимно перпендикулярны, то числовое значение ускорения а можно определить при помощи теоремы Пифагора:
a = sqrt(at 2 + an 2 ).

Направление вектора a можно определить, исходя из тригонометрических соотношений, по одной из следующих формул:
sin α = an/a; cos α = at/a; tg α = an/at.

Но можно сначала определить направление полного ускорения a использовав формулу tg α = an/at,
а затем найти числовое значение a:
a = an/sin α или a = at/cos α.

Касательное и нормальное ускорения точки являются главными кинематическими величинами, определяющими вид и особенности движения точки.

Наличие касательного ускорения (at≠0) или его отсутствие (at=0) определяют соответственно неравномерность или равномерность движения точки.

Наличие нормального ускорения (an≠0) или его отсутствие (an=0) определяют криволинейность или прямолинейность движения точки.

Движение точки можно классифицировать так:
а) равномерное прямолинейное (at = 0 и an = 0);
б) равномерное криволинейное (at = 0 и an ≠ 0);
в) неравномерное прямолинейное (at ≠ 0 и an = 0);
г) неравномерное криволинейное (at ≠ 0 и an ≠ 0).

Таким образом, движение точки классифицируется по двум признакам: по степени неравномерности движения и по виду траектории.

Степень неравномерности движения точки задана уравнением s=f(t), а вид траектории задается непосредственно.

§ 27. Равномерное прямолинейное движение точки

Если at=0 и an=0, то вектор скорости остается постоянным (v=const), т. е. не изменяется ни по модулю, ни по направлению. Такое движение называется равномерным прямолинейным .

Уравнение равномерного движения имеет вид
(а) s = s + vt
или в частном случае, когда начальное расстояние s=0,
(б) s = vt.

В уравнение (а) входит всего четыре величины, из них две переменные: s и t и две постоянные: s и v. Поэтому в условии задачи на равномерное и прямолинейное движение точки должны быть заданы три любые величины.

При решении задач необходимо выяснить все заданные величины и привести их к одной системе единиц. При этом нужно заметить, что как в системе МКГСС (технической), так и в СИ единицы всех кинематических величин одинаковы: расстояние s измеряется в м, время t – в сек, скорость v – в м/сек.

§ 28. Равномерное криволинейное движение точки

Если at = 0 и an ≠ 0, то модуль скорости остается неизменным (точка движется равномерно), но ее направление изменяется и точка движется криволинейно. Иначе, при равномерном движении по криволинейной траектории точка имеет нормальное ускорение, направленное по нормали к траектории и численно равное
an = v 2 /R,
где R – радиус кривизны траектории.

В частном случае движения точки по окружности (или по дуге окружности) радиус кривизны траектории во всех ее точках постоянный:
R = r = const,
а так как и числовое значение скорости постоянно, то
an = v 2 /r = const.

При равномерном движении числовое значение скорости определяется из формулы
v = (s — s)/t или v = s/t.

Если точка совершит полный пробег по окружности, то путь s равен длине окружности, т. е. s = 2πr = πd (d = 2r – диаметр), а время равно периоду, т. е. t = T. Выражение скорости примет вид
v = 2πr/T = πd/T.

§ 29. Равнопеременное движение точки

Если вектор at=const (касательное ускорение постоянно как по модулю, так и по направлению), то an=0. Такое движение называется равнопеременным и прямолинейным .

Если же постоянным остается только числовое значение касательного уравнения
at = dv/dt = f'(t) = const,
то an≠0 и такое движение точки называется равнопеременным криволинейным .

При |at|>0 движение точки называется равноускоренным , а при |at| равнозамедленным .

Уравнение равнопеременного движения независимо от его траектории имеет вид
(1) s = s + vt + att 2 / 2.

Здесь s – расстояние точки от исходного положения в момент начала отсчета; v – начальная скорость и at – касательное ускорение – величины численно постоянные, a s и t – переменные.

Числовое значение скорости точки в любой момент времени определяется из уравнения
(2) v = v + att.

Уравнения (1) и (2) являются основными формулами равнопеременного движения и они содержат шесть различных величин: три постоянные: s, v, at и три переменные: s, v, t.

Следовательно, для решения задачи на равнопеременное движение точки в ее условии должно быть дано не менее четырех величин (систему двух уравнений можно решить лишь в том случае, если они содержат два неизвестных).

Если неизвестные входят в оба основных уравнения, например, неизвестны at и t, то для удобства решения таких задач выведены вспомогательные формулы:

после исключения at из (1) и (2)
(3) s = s + (v + v)t / 2;

после исключения t из (1) и (2)
(4) s = s + (v 2 — v 2 ) / (2at).

В частном случае, когда начальные величины s=0 и v=0 (равноускоренное движение из состояния покоя), то получаем те же формулы в упрощенном виде:
(5) s = att 2 / 2;
(6) v = att;
(7) s = vt / 2;
(8) s = v 2 / (2at).

Уравнения (5) и (6) являются основными, а уравнения (7) и (8) – вспомогательными.

Равноускоренное движение из состояния покоя, происходящее под действием только силы тяжести, называется свободным падением . К этому движению применимы формулы (5)–(8), причем
at = g = 9,81 м/сек 2 ≈ 9,8 м/сек 2 .

§ 30. Неравномерное движение точки по любой траектории


§ 31. Определение траектории, скорости и ускорения точки, если закон ее движения задан в координатной форме

Если точка движется относительно некоторой системы координат, то координаты точки изменяются с течением времени. Уравнения, выражающие функциональные зависимости координат движущейся точки от времени, называют уравнениями движения точки в системе координат (см. § 51, п. 2 в учебнике Е. М. Никитина).

Движение точки в пространстве задается тремя уравнениями:
x = f1(t);
(1) y = f2(t);
z = f3(t);

Движение точки в плоскости (рис. 203) задается двумя уравнениями:
(2) x = f1(t);
y = f2(t);

Системы уравнений (1) или (2) называют законом движения точки в координатной форме .

Ниже рассматривается движение точки в плоскости, поэтому используется только система (2).

Если закон движения точки задан в координатной форме, то:

а) траектория плоского движения точки выражается уравнением
y = F(x),
которое образуется из данных уравнений движения после исключения времени t;

б) числовое значение скорости точки находится из формулы
v = sqrt(vx 2 + vy 2 )
после предварительного определения проекции (см. рис. 203) скорости на оси координат
vx = dx/dt и vy = dy/dt;

в) числовое значение ускорения находится из формулы
a = sqrt(ax 2 + ay 2 )
после предварительного определения проекций ускорения на оси координат
ax = dvx/dt и ay = dvy/dt;

г) направления скорости и ускорения относительно осей координат определяются из тригонометрических соотношений между векторами скорости или ускорения и их проекциями.

§ 32. Кинематический способ определения радиуса кривизны траектории

При решении многих технических задач возникает необходимость знать радиус кривизны R (или 1/R – кривизну ) траектории. Если задано уравнение траектории, то радиус ее кривизны в любой точке можно определить при помощи дифференциального исчисления. Используя уравнения движения точки в координатной форме, можно определять радиус кривизны траектории движущейся точки без непосредственного исследования уравнения траектории. Определение радиуса кривизны траектории при помощи уравнений движения точки в координатной форме называется кинематическим способом. Этот способ основан на том, что радиус кривизны траектории движущейся точки входит в формулу
an = v 2 /R,
выражающую числовое значение нормального ускорения.

Скорость v точки определяется по формуле
(б) v = sqrt(vx 2 + vy 2 ).

Числовое значение нормального ускорения an входит в выражение полного ускорения точки
a = sqrt(an 2 + at 2 ),
откуда
(в) an = sqrt(a 2 — at 2 ),
где квадрат полного ускорения
(г) a 2 = ax 2 + ay 2
и касательное ускорение
(д) at = dv/dt.

Таким образом, если закон движения точки задан уравнениями
x = f1(t);
y = f2(t),
то при определении радиуса кривизны траектории рекомендуется произвести следующее:

1. Продифференцировав уравнения движения, найти выражения проекций на оси координат вектора скорости:
vx = f1‘(t);
vy = f2‘(t).

2. Подставив в (б’) выражения vx и vy, найти v 2 .

3. Продифференцировав по t уравнение (б), полученное непосредственно из (б’), найти касательное ускорение at, а затем at 2 .

4. Продифференцировав вторично уравнения движения, найти выражения проекций на оси координат вектора ускорения
ax = f1»(t) = vx‘;
ay = f2»(t) = vy‘.

5. Подставив в (г) выражения ax и ay, найти a 2 .

6. Подставить в (в) значения a 2 и at 2 и найти an.

7. Подставив в (а) найденные значения v 2 и an, получить радиус кривизны R.

Радиус кривизны плоской кривой

Любая линия является кривой, даже прямая. Поэтому к любой линии применимы такие характеристики как кривизна или радиус кривизны. Как правило кривизна обозначается латинской литерой k, а радиус кривизны греческой литерой ρ.

Между собой эти характеристики кривой связаны следующим образом:

k = 1/ρ (542.1)

Т.е. чем больше радиус кривой, тем меньше ее кривизна.

А теперь рассмотрим несколько частных случаев кривых.

Радиус кривизны окружности

Окружность — это плоская кривая с постоянным радиусом кривизны. Т.е. радиус окружности это и есть радиус кривизны окружности:

Как определить радиус окружности, мы рассмотрим ниже.

Кривизна дуги

Любая дуга — это часть окружности. Соответственно радиус дуги равен радиусу окружности:

Рисунок 542.1. Дуга — часть окружности

На рисунке 542.1 мы видим дугу АВ, показанную оранжевым цветом, являющуюся частью окружности с радиусом R. Кроме того, мы видим, что угол α, образованный радиусами в точках А и В, равен углу между касательными (показаны фиолетовым цветом) к окружности в этих точках.

Эти закономерности позволяют определить радиус дуги и найти центр окружности даже тогда, когда изначально мы окружность не видим, а только имеем дугу.

Понятие кривизны дуги формулируется так:

Кривизна дуги — это отношение угла между касательными, проведенными в начале и конце дуги, к длине дуги

Т.е. зная длину дуги m и угол α между касательными, мы можем определить кривизну дуги:

А так как длина дуги зависит от угла между радиусами или между касательными в концах дуги:

то, подставив значение длины дуги в уравнение (542.3), получим:

Примечание: При измерении угла между касательными не в радианах, а в градусах уравнение длины дуги имеет другой вид:

но сути дела это не меняет. Такая запись по-прежнему означает, что мы рассматриваем часть длины окружности. Так при α = 360° дуга становится окружностью

Более того, сама идея радианов на этой формуле и основана, так прямой угол 90° = П/2, развернутый 180° = П и т.д.

И еще одно интересное свойство дуги: Если соединить точки А и В прямой линией, то угол между этой линией и касательными будет равен α/2, а сама прямая линия — это и есть расстояние между точками А и В. Если дуга расположена в плоскости соответствующим образом, например так, как показано на рисунке 542.2:

Рисунок 542.2. Дуга из точки начала координат.

то расстояние между точками — это проекция l дуги на ось х. А максимальное расстояние между дугой и осью х — это стрела дуги h.

Радиус кривизны прямой линии

Любая прямая линия, даже бесконечно длинная, может рассматриваться как бесконечно малая часть окружности, т.е. как дуга. Соответственно в каких единицах измерять радиус такой окружности даже трудно представить.

Читайте также  Как нарисовать парня

Поэтому обычно прямой линией называют кривую с бесконечно большим радиусом:

kп.л = 1/∞ = 0 (542.6)

Про до сих пор неразрешенный парадокс, возникающий при подобных подходах к прямой линии и к окружности, я уже упоминал в статье «Основы геометрии. Определения основных элементов, пятый элемент». Здесь лишь добавлю, что через прямую линию можно провести бесконечное множество плоскостей и в любой из этих плоскостей радиус кривизны прямой линии будет равен бесконечности. При этом через окружность можно провести две взаимно перпендикулярные плоскости, в одной из которых окружность будет окружностью, а в другой — прямой линией конечной длины. Поэтому

все линии, которые в одной из плоскостей имеют бесконечно большой радиус кривизны, считаются плоскими

Ну и на закуску еще несколько парадоксов, на этот раз связанных с определениями кривизны и радиуса:

1. Из уравнения (542.1) можно сделать вывод, что:

kp = 1 (542.7)

Соответственно для прямой линии:

0·∞ = 1 (542.7.2)

Т.е. если бесконечно много раз взять ноль, то на единичку мы наскребем. Впрочем дальше будет еще веселее.

2. Если прямая — это дуга с бесконечно большим радиусом, соответственно касательные, проведенные в концах такой дуги, совпадают с прямой, а угол, образованный касательными, равен нулю.

Это означает, что радиусы проведенные в концах дуги — прямой линии, являются параллельными прямыми и не могут пересекаться. А между тем по определению это радиусы, которые обязательно должны сходиться в некоторой точке — центре окружности.

Получается, что параллельные прямые пересекаться не должны, но где-то в бесконечности все-таки пересекаются.

Разрешить этот парадокс пытались многие математики, однако в пределах евклидовой геометрии при принятом толковании определений данный парадокс не разрешим.

Радиус кривизны точки

Точка — это самый простой и самый сложный элемент геометрии. Одни считают, что точка не имеет размеров, а значит и определить кривизну или радиус кривизны точки не возможно. Другие, в частности Евклид, считают, что точка не имеет частей, а каковы при этом размеры точки — не совсем понятно. Я же считаю, что точка — это начальный, далее не делимый элемент геометрии, размеры которого пренебрежимо малы по сравнению с остальными рассматриваемыми элементами. В этом случае для точки будут справедливыми следующие уравнения кривизны и радиуса кривизны:

kт. = 1/0 = ∞ (542.9)

И хотя нас с первых лет обучения в школе учат, что делить на 0 нельзя и даже встроенный в операционную систему калькулятор пишет, что «деление на ноль невозможно», тем не менее делить на ноль можно, а результатом деления всегда будет бесконечность.

Как и в случае с прямой мы имеем парадоксальный результат, выражаемый формулой (542.5.2). Тем не менее точку также можно отнести к плоской кривой, имеющей постоянный радиус кривизны.

Примечание: На мой взгляд большинство из описанных выше парадоксов возникают из-за неправильного толкования понятия «бесконечность». Бесконечность как некая абсолютная величина не имеет пределов, а значит и никакому измерению не поддается. Кроме того бесконечность — это даже не постоянная, а переменная величина. Например луч — это прямая линия с началом в некоторой точке. Длина луча может быть бесконечно большой. При этом прямая линия тоже может быть бесконечно длинной при этом не иметь ни начала ни конца. Получается, что с одной стороны бесконечно длинный луч вроде бы в 2 раза короче, чем бесконечно длинная прямая. А с другой стороны длины их бесконечны и поэтому равны.

Возможным выходом из этой ситуации является принятие понятия «бесконечность», как относительного. Например, кривизна прямой линии является пренебрежимо малой величиной по отношению к радиусу кривизны. Или радиус кривизны прямой линии несопоставимо больше кривизны. Подобные толкования допускают и наличие кривизны прямой и некое конечное значение радиуса кривизны прямой и многое другое. Я бы назвал такой относительный подход к рассмотрению проблемы реалистичным, а подходы, использующие абсолютные понятия — идеализированными. Впрочем прямого отношения к теме данной статьи это не имеет. Продолжим рассмотрение плоских кривых.

И окружность и прямая линия являются плоскими кривыми с постоянным радиусом кривизны. При этом радиус кривизны прямой линии всегда известен, так как равен бесконечности, а для окружности всегда можно определить радиус, воспользовавшись теоремой Пифагора. Так в частном случае, если центр окружности совпадает с началом координат рассматриваемой плоскости (u = 0; v = 0 — координаты центра окружности), то:

Рисунок 541.4. Радиус окружности, как гипотенуза прямоугольного треугольника.

R 2 = x 2 + y 2 (541.1.2)

А в общем случае, когда координаты центра окружности не совпадают с началом координат:

Рисунок 542.3. Окружность, центр которой не совпадает с началом координат.

R 2 = (x — u) 2 + (y — v) 2 (542.10)

Но в жизни достаточно часто приходится сталкиваться с кривыми, радиус кривизны которых — не постоянная величина. Более того, этот радиус может изменяться в двух плоскостях измерения. Тем не менее так далеко углубляться в геометрию и алгебру мы не будем и далее рассмотрим, как можно определить радиус плоской кривой в некоторой точке.

Плоские кривые с изменяющимся радиусом кривизны

Примеров плоских кривых с изменяющимся радиусом кривизны очень много, это и гиперболы, и параболы, и синусоиды и т.п. Определение радиуса кривизны таких кривых основано на следующих теоретических предпосылках:

1. Любую окружность можно рассматривать как некоторое множество дуг.

2. Если количество дуг, составляющих окружность, стремится к бесконечности, то соответственно длина таких дуг стремится к нулю (m → 0).

3. Если мы обозначим длину такой очень короткой дуги как приращение функции длины окружности (m = Δl), то уравнение кривизны (542.3) примет следующий вид:

(542.3.1)

4. Тогда любую плоскую кривую с изменяющимся радиусом можно рассматривать как стремящееся к бесконечности множество дуг с постоянным радиусом. Другими словами в пределах любой кривой, описываемой параметрическими уравнениями, всегда можно выделить дугу, пусть даже и очень малой длины, стремящейся к точке и определить для нее кривизну и радиус кривизны в рассматриваемой точке.

Это означает, что самый точный способ определения радиуса кривизны в таком случае — это использование дифференциальных исчислений. В общем случае для этого нужно два раза продифференцировать уравнение радиуса окружности (542.10) по аргументу функции х, а затем извлечь квадратный корень из полученного результата. В итоге (полный вывод уравнения здесь не привожу из-за повышенной сложности записи, а для особо заинтересованных есть справочники и другие сайты) мы получим следующую формулу для определения радиуса кривизны:

(542.11)

Соответственно кривизна плоской кривой в рассматриваемой точке будет равна:

(542.12)

В частном случае, когда тангенс угла между касательными — первая производная от функции — является относительно малой величиной, например, tg2° = 0.035 соответственно (tg2°) 2 = 0.0012, то влиянием куба суммы первой производной и единицы на кривизну можно пренебречь (значение знаменателя дроби сводится к единице) и тогда:

k = y» = d 2 y/dx 2 (542.12.2)

Т.е. формально в таких случаях кривизной считается не отношение угла наклона между касательными к длине дуги, а некоторая величина, примерно соответствующая высоте h на рисунке 542.2.

Эта особенность второй производной очень активно используется в частности для упрощения определения прогиба элементов строительных конструкций.

На этом пока все.

Доступ к полной версии этой статьи и всех остальных статей на данном сайте стоит всего 30 рублей. После успешного завершения перевода откроется страница с благодарностью, адресом электронной почты и продолжением статьи. Если вы хотите задать вопрос по расчету конструкций, пожалуйста, воспользуйтесь этим адресом. Зараннее большое спасибо.)). Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье «Записаться на прием к доктору»

Для терминалов номер Яндекс Кошелька 410012390761783

Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV

Для Украины — номер гривневой карты (Приватбанк) 5168 7422 4128 9630

Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье «Записаться на прием к доктору» (ссылка в шапке сайта).

Определение радиуса кривизны траектории по заданным уравнениям движения точки

Рассмотрим алгоритм решения такой задачи. Пусть движение точки задано в координатной форме:

Для определения радиуса кривизны траектории необходимо вычислить квадрат скорости точки и её нормальное ускорение:

Квадрат полного ускорения точки вычисляем по формуле:

Учитывая, что нормальная и касательная составляющие ускорения взаимно перпендикулярны, находим

Отсюда: .

Квадрат скорости точки определяем по формуле:

Для определения касательного ускорения продифференцируем по времени последнее соотношение:

или

Здесь – проекция вектора ускорения на направление вектора скорости. Заметим, что .

Пример 1.7

Движение точки задано уравнениями

Определить радиус кривизны траектории для любого момента времени.

Вычислим квадрат скорость точки: .

Вычислим квадрат ускорения точки: .

Равенство принимает вид: .

.

Нормальное ускорение равно

.

Определяем радиус кривизны траектории

Пример 1.8

Определить радиус кривизны траектории снаряда, движение которого описано в примере 1.2.

Применительно к задаче о движении снаряда получаем:

Заметим, что направление движения снаряда по траектории со временем не изменяется. Направим орт касательной по направлению вектора скорости. Тогда проекция вектора скорости на направление орта касательной к траектории положительна в любой момент времени.

ЗАДАЧИ, РЕКОМЕНДУЕМЫЕ ДЛЯ РАЗБОРА В АУДИТОРИИ И ДЛЯ ЗАДАНИЯ НА ДОМ:

Из сборника задач И.В.Мещерского: 10.4; 12.1; 12.6; 12.7; 12.9; 12.10.

Из учебника «ТЕОРЕТИЧЕСКАЯ МЕХАНИКА — теория и практика»: комплекты СР-17;

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 3

КИНЕМАТИКА ТВЁРДОГО ТЕЛА

Простейшие движения твёрдого тела

Пример 2.1

Угол наклона полного ускорения точки обода махового колеса к радиусу . Касательное ускорение этой точки в данный момент времени Найти нормальное ускорение точки, отстоящей от оси вращения на расстоянии Радиус махового колеса

Рис. 2.1

Нормальное ускорение точки направлено по радиусу (Рис. 2.1), следовательно,

Отсюда:

;

Пример 2.2

Вал радиуса приводится во вращение гирей, прикрепленной к концу троса, намотанного на вал. Определить модуль ускорения точки обода вала, если ускорение гири (Рис.2.2). В начальный момент вал находился в покое.

Читайте также  Как вставить в Word файл
Рис. 2.2

Точки троса, покинув поверхность вала, движутся прямолинейно равноускоренно:

Поскольку трос не проскальзывает по поверхности вала, скорости точек троса и вала совпадают.

Используя формулу Эйлера, находим угловую скорость вала

и его угловое ускорение

Теперь определяем составляющие ускорения любой точки обода вала:

Остается определить модуль ускорения точки

Заметим, что если скорости точек троса и вала совпадают, то их ускорения различны: точка вала имеет нормальную составляющую ускорения, поскольку движется по криволинейной траектории.

Пример 2.3

Стрелка гальванометра длиной колеблется вокруг неподвижной оси по закону Определить ускорение конца стрелки в ее среднем и крайних положениях, если период колебаний , а угловая амплитуда

Прежде всего, зная закон вращения, определим угловую скорость и угловое ускорение тела:

Используя формулы (2.3), определяем касательное и нормальное ускорения точки:

Период связан с круговой частотой соотношением 2 .

Для среднего положения стрелки имеем:

Для крайних положений стрелки имеем:

ЗАДАЧИ, РЕКОМЕНДУЕМЫЕ ДЛЯ РАЗБОРА В АУДИТОРИИ И ДЛЯ ЗАДАНИЯ НА ДОМ:

Из сборника задач И.В.Мещерского: 13.6; 13.14; 13.17; 13.18; 14.4; 14.5; 14.10.

ПРАКТИЧЕСКИЕ ЗАНЯТИЯ № 4-5

Дата добавления: 2019-09-02 ; просмотров: 532 ; Мы поможем в написании вашей работы!

Кинематика материальной точки

Основные формулы кинематики материальной точки

Приведем основные формулы кинематики материальной точки. После чего дадим их вывод и изложение теории.

Радиус-вектор материальной точки M в прямоугольной системе координат Oxyz :
,
где – единичные векторы (орты) в направлении осей x, y, z .

Скорость точки:
;
;
;
Единичный вектор в направлении касательной к траектории точки:
.
Вектор можно выбрать двумя способами во взаимно противоположных направлениях. Обычно его выбирают в направлении увеличения дуговой координаты. Тогда, наряду с модулем скорости , вводят алгебраическую величину скорости . При , вектор скорости сонаправлен с . При – имеет противоположное с направление.

Тангенциальное (касательное) ускорение:
;
;
.
Здесь, как и для скорости, – это алгебраическое касательное ускорение, . Если , то вектор касательного ускорения сонаправлен с . При – имеет противоположное с направление.

Единичный вектор, направленный к центру кривизны траектории точки (вдоль главной нормали):
.

Радиус кривизны траектории:
.

Далее приводится вывод этих формул и изложение теории кинематики материальной точки.

Радиус-вектор и траектория точки

Рассмотрим движение материальной точки M . Выберем неподвижную прямоугольную систему координат Oxyz с центром в некоторой неподвижной точке O . Тогда положение точки M однозначно определяются ее координатами ( x, y, z ) . Эти координаты являются компонентами радиус-вектора материальной точки.

Радиус-вектор точки M – это вектор , проведенный из начала неподвижной системы координат O в точку M .
,
где – единичные векторы в направлении осей x, y, z .

При движении точки, координаты изменяются со временем . То есть они являются функциями от времени . Тогда систему уравнений
(1)
можно рассматривать как уравнение кривой, заданной параметрическими уравнениями. Такая кривая является траекторией точки.

Траектория материальной точки – это линия, вдоль которой происходит движение точки.

Если движение точки происходит в плоскости, то можно выбрать оси и системы координат так, чтобы они лежали в этой плоскости. Тогда траектория определяется двумя уравнениями

В некоторых случаях, из этих уравнений можно исключить время . Тогда уравнение траектории будет иметь зависимость вида:
,
где – некоторая функция. Эта зависимость содержит только переменные и . Она не содержит параметр .

Скорость материальной точки

Согласно определению скорости и определению производной:

Производные по времени, в механике, обозначают точкой над символом. Подставим сюда выражение для радиус-вектора:
,
где мы явно обозначили зависимость координат от времени. Получаем:

,
где
,
,

– проекции скорости на оси координат. Они получаются дифференцированием по времени компонент радиус-вектора
.

Таким образом
.
Модуль скорости:
.

Касательная к траектории

С математической точки зрения, систему уравнений (1) можно рассматривать как уравнение линии (кривой), заданной параметрическими уравнениями. Время , при таком рассмотрении, играет роль параметра. Из курса математического анализа известно, что направляющий вектор для касательной к этой кривой имеет компоненты:
.
Но это есть компоненты вектора скорости точки. То есть скорость материальной точки направлена по касательной к траектории.

Все это можно продемонстрировать непосредственно. Пусть в момент времени точка находится в положении с радиус-вектором (см. рисунок). А в момент времени – в положении с радиус-вектором . Через точки и проведем прямую . По определению, касательная – это такая прямая , к которой стремится прямая при .
Введем обозначения:
;
;
.
Тогда вектор направлен вдоль прямой .

При стремлении , прямая стремится к касательной , а вектор – к скорости точки в момент времени :
.
Поскольку вектор направлен вдоль прямой , а прямая при , то вектор скорости направлен вдоль касательной .
То есть вектор скорости материальной точки направлен вдоль касательной к траектории.

Введем направляющий вектор касательной единичной длины:
.
Покажем, что длина этого вектора равна единице. Действительно, поскольку
, то:
.

Здесь мы направили вектор по направлению к вектору скорости, поскольку это более удобно. Но могут возникнуть случаи, когда точка останавливается и движется по той же траектории в обратном направлении. Чтобы не вводить для одной и той же точки траектории два единичных касательных вектора, нужно охватить случай, когда направлен противоположно скорости. Для этого вводят алгебраическую величину скорости:
.
Если направления векторов и совпадают, то . Если они противоположны, то .
– это проекция скорости на направление единичного вектора . Она равна скалярному произведению этих векторов:
.

Абсолютную величину (модуль) вектора скорости мы обозначаем символом с прямыми скобками, или символом без стрелки:
;
Алгебраическая величина скорости:
.

Тогда вектор скорости точки можно представить в следующем виде:
.

Ускорение материальной точки

Аналогично предыдущему, получаем компоненты ускорения (проекции ускорения на оси координат):
;
;
;
.
Модуль ускорения:
.

Тангенциальное (касательное) и нормальное ускорения

Теперь рассмотрим вопрос о направлении вектора ускорения по отношению к траектории. Для этого применим формулу:
.
Дифференцируем ее по времени, применяя правило дифференцирования произведения:
.

Вектор направлен по касательной к траектории. В какую сторону направлена его производная по времени ?

Чтобы ответить на этот вопрос, воспользуемся тем, что длина вектора постоянна и равна единице. Тогда квадрат его длины тоже равен единице:
.
Здесь и далее, два вектора в круглых скобках обозначают их скалярное произведение. Продифференцируем последнее уравнение по времени:
;
;
.
Поскольку скалярное произведение векторов и равно нулю, то эти векторы перпендикулярны друг другу. Так как вектор направлен по касательной к траектории, то вектор перпендикулярен к касательной.

Первую компоненту называют тангенциальным или касательным ускорением:
.
Вторую компоненту называют нормальным ускорением:
.
Тогда полное ускорение:
(2) .
Эта формула представляет собой разложение ускорения на две взаимно перпендикулярные компоненты – касательную к траектории и перпендикулярную к ней.

Поскольку , то
(3) .

Тангенциальное (касательное) ускорение

Также как и для скорости, введем алгебраическую величину вектора касательного ускорения :
.
Если , то вектор касательного ускорения сонаправлен с . Если , то эти векторы противоположны. Абсолютную величину касательного ускорения будем обозначать прямыми скобками: . Тогда
.

Умножим обе части уравнения (2) скалярно на :
.
Поскольку , то . Тогда
;
.
Здесь мы положили: .
Отсюда видно, что алгебраическая величина тангенциального ускорения равна проекции полного ускорения на направление касательной к траектории. Она также равна производной по времени алгебраической величины скорости точки: .

Подставив , имеем:
.
Здесь мы учли, что .

Найдем производную по времени модуля скорости . Применяем правила дифференцирования:

;
.

Итак,
.
Отсюда следует, что если между векторами ускорения и скорости острый угол: , то движение ускоренное. Абсолютное значение скорости возрастает. Если между ними тупой угол: , то движение замедленное. Абсолютное значение скорости убывает.

Выразим ускорение через тангенциальное и нормальное: , и учтем, что . Получим:
.
Тогда предыдущую формулировку можно выразить посредством тангенциального ускорения. Если векторы касательного ускорения и скорости направлены в одну сторону, то движение ускоренное. Если их направления противоположны, то движение замедленное.

Радиус кривизны траектории

Теперь исследуем вектор .

Рассмотрим вектор в два момента времени – в момент времени t и в момент t 1 . Введем обозначения: . По определению производной:
.
Пусть в момент времени t , точка находится в положении M , а в момент t 1 – в положении M 1 (см. рисунок).

Рассмотрим случай, когда алгебраическая скорость положительна: . То есть направления векторов и совпадают. Тогда точка M 1 находится справа от M . Через точки и проведем плоскости, перпендикулярные векторам и . Пересечение этих плоскостей образует прямую. Она проходит через точку C перпендикулярно плоскости рисунка. MC – это перпендикуляр, опущенный из точки M на эту прямую.

При , точка стремится к точке , а длина отрезка CM стремится к радиусу кривизны траектории ρ . Поскольку и , то угол между отрезками и равен углу между векторами и . Отложим их для наглядности из одного центра.

Абсолютное значение производной:
.
Здесь мы учли, что .

Вектор , как указывалось выше, перпендикулярен . В данном случае он направлен вдоль единичного вектора главной нормали , направленной к центру кривизны C траектории. Поэтому при имеем:
.

Теперь рассмотрим случай, когда алгебраическое значение скорости отрицательно: . В этом случае, вектор скорости противоположен . Получается тот же рисунок, только точка располагается слева от M . В результате абсолютное значение производной остается прежней:
.
Но ее направление меняется на противоположное:
.
Поскольку , то формула сохраняет прежний вид и в этом случае:
.

Нормальное ускорение

Теперь находим нормальное ускорение:
.
Перепишем результат в следующем виде:
,
где ; – единичный вектор в направлении главной нормали траектории – то есть вектор, направленный к мгновенному центру кривизны перпендикулярно касательной к траектории. Поскольку , то также является модулем нормального ускорения. Для него не нужно вводить алгебраическое значение, как мы это делали для скорости и касательного ускорения.
Нормальное ускорение всегда направлено к центру кривизны траектории.

Из формулы (2) имеем:
(4) .
Из формулы (3) находим модуль нормального ускорения:
.

Умножим обе части уравнения (2) скалярно на :
(2) .
.
Поскольку , то . Тогда
;
.
Отсюда видно, что модуль нормального ускорения равен проекции полного ускорения на направление главной нормали.

Выпишем еще раз следующую формулу:
.
Отсюда видно, что нормальное ускорение вызывает изменение направления скорости точки, и оно связано с радиусом кривизны траектории.

Радиус кривизны траектории:
.

И в заключении заметим, что формулу (4) можно переписать в следующем виде:
.
Здесь мы применили формулу для векторного произведения трех векторов:
,
в которую подставили
.

Итак, мы получили:
;
.
Приравняем модули левой и правой частей:
.
Но векторы и взаимно перпендикулярны. Поэтому
.
Тогда
.
Это известная формула из дифференциальной геометрии для кривизны кривой.

Автор: Олег Одинцов . Опубликовано: 09-02-2016 Изменено: 27-01-2020

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: