Как найти площадь криволинейной трапеции

Определенный интеграл. Теорема Ньютона — Лейбница

Определенный интеграл как площадь криволинейной трапеции
Производная от определенного интеграла по верхнему пределу
Теорема Ньютона — Лейбница
Примеры решения задач

Определенный интеграл как площадь криволинейной трапеции

Рассмотрим на плоскости прямоугольную систему координат Oty , ось абсцисс которой в данном разделе будем обозначать Ot , а не Ox (рис. 1).

Пусть y = f (t) – непрерывная на отрезке [a, b] функция, принимающая только положительные значения.

Определение 1. Фигуру, ограниченную графиком функции y = f (t) сверху, отрезком [a, b] снизу, а справа и слева отрезками прямых t = a и t = b (рис. 2), называют криволинейной трапецией.

Определение 2. Число, равное площади криволинейной трапеции, изображенной на рисунке 2, называют определенным интегралом от функции f (t) в пределах от a до b и обозначают

(1)

Формула (1) читается так: «Интеграл от a до b от функции f (t) по dt »

Определение 3. В формуле (1) функцию f (t) называют подынтегральной функцией, переменную t называют переменной интегрирования, отрезок [a, b] называют отрезком интегрирования, число b называют верхним пределом интегрирования, а число a – нижним пределом интегрирования.

Производная от определенного интеграла по верхнему пределу

Если обозначить S (x) площадь криволинейной трапеции, ограниченной с боков отрезками прямых t = a и t = x (рис. 3),

то будет справедлива формула

(2)

Теорема 1. Производная от определенного интеграла по верхнему пределу интегрирования равна значению подынтегральной функции в верхнем пределе интегрирования.

Другими словами, справедлива формула

Доказательство. Из формулы (2) следует, что

(3)

где через Δx обозначено приращение аргумента x (рис. 4)

Из формул (3) и (2) получаем, что

(4)

где через ΔS обозначено приращение функции S (x), соответствующее приращению аргумента Δx (рис. 5)

Если ввести обозначения

(см. раздел «Наибольшее и наименьшее значение функции на отрезке»), то можно заметить, что выполнено неравенство

(5)

смысл которого заключается в том, что площадь криволинейной трапеции, изображенной на рисунке 5, не может быть меньше, чем площадь прямоугольника с основанием Δx и высотой m, и не может быть больше, чем площадь прямоугольника с основанием Δx и высотой M.

Из неравенства (5) следует, что

В силу непрерывности функции y = f (t) выполнено равенство

(6)

что и завершает доказательство теоремы 1.

Следствие 1. Функция S (x) является первообразной подынтегральной функции f (x) .

Теорема Ньютона — Лейбница

Теорема Ньютона-Лейбница. Если F (x) – любая первообразная функции f (x), то справедливо равенство

(7)
S (x) = F (x) + c (8)

Воспользовавшись равенством (8), из формулы (2) получаем, что

(9)

Подставив в формулу (9) значение x = a , получаем равенство

(10)
(11)

поскольку площадь криволинейной трапеции, «схлопнувшейся» в отрезок, лежащий на прямой t = a, равна 0 .

Из формул (10) и (11) следует, что

и формула (9) принимает вид

,

что и завершает доказательство теоремы Ньютона-Лейбница.

Замечание 1. Формулу (7) часто записывают в виде

(12)

и называют формулой Ньютона-Лейбница.

Замечание 2. Для правой части формулы Ньютона-Лейбница часто используют обозначение

Замечание 3. Формулу Ньютона-Лейбница (12) можно записывать, как с переменной интегрирования t , так и с любой другой переменной интегрирования, например, x :

Замечание 4. Все определения и теоремы остаются справедливыми не только в случае положительных непрерывных функций f (x), но и для гораздо более широкого класса функций, имеющих произвольные знаки и интегрируемых по Риману, однако этот материал уже выходит за рамки школьного курса математики.

Примеры решения задач

Задача 1. Найти площадь фигуры, ограниченной линиями

Решение. Рассматриваемая фигура является криволинейной трапеции (рис. 6)

Ответ.

Задача 2. График функции y = f (x) изображен на рисунке 7.

(13)

Решение. Интеграл (13) равен площади криволинейной трапеции, ограниченной сверху графиком функции y = f (x), ограниченной снизу осью абсцисс Ox и ограниченной с боков отрезками прямых x = 2 и x = 9. Криволинейная трапеция состоит из квадрата, раскрашенного на рисунке 7 розовым цветом, и трапеции, раскрашенной на рисунке 7 зеленым цветом. Площадь квадрата равна 9, а площадь трапеции равна 20. Таким образом, интеграл (13) равен 29.

(14)

Решение. Поскольку одной из первообразных подынтегральной функции интеграла (14) является функция

то в соответствии с формулой Ньютона-Лейбница получаем

Ответ.

Определенный интеграл. Площадь криволинейной трапеции. Формула Ньютона-Лейбница. Задание 7

В этой статье мы будем учиться решать задачи на нахождение площади криволинейной трапеции.

Как всегда, начнем с теории. Как вы помните, неопределенный интеграл от функции — это множество всех первообразных :

В неопределенном интеграле не заданы границы интегрирования, и в результате нахождения неопределенного интеграла от функции мы получаем множество первообразных, отличающихся друг от друга на постоянную величину С.

Если заданы границы интегрирования, то мы получаем определенный интеграл:

Здесь число — нижний предел интегрирования, число — верхний предел интегрирования. Определенный интеграл — это ЧИСЛО, значение которого вычисляется по формуле Ньютона — Лейбница :

.

— это значение первообразной функции в точке , и, соответственно, — это значение первообразной функции в точке .

Для нас с точки зрения решения задач важное значение имеет геометрический смысл определенного интеграла.

Рассмотрим фигуру, изображенную на рисунке:

Зеленая фигура, ограниченая сверху графиком функции , слева прямой , справа прямой , и снизу осью ОХ называется криволинейной трапецией.

Геометрический смысл определенного интеграла:

Определенный интеграл — это число, равное площади криволинейной трапеции — фигуры, ограниченой сверху графиком положительной на отрезке функции , слева прямой , справа прямой , и снизу осью ОХ.

Решим задачу из Открытого банка заданий для подготовки к ЕГЭ по математике.

Прототип Задания 7 (№ 323080)

На рисунке изображён график некоторой функции . Функция — одна из первообразных функции . Найдите площадь закрашенной фигуры.

Закрашенная фигура представляет собой криволинейную трапецию, ограниченную сверху графиком функции , слева прямой , справа прямой , и снизу осью ОХ.

Площадь этой криволинейной трапеции вычисляется по формуле :

, где — первообразная функции .

По условию задачи , поэтому, чтобы найти площадь фигуры, нам нужно найти значение первообразной в точке -8, в точке -10, и затем из первого вычесть второе.

Замечу, что в этих задачах очень часто возникают ошибки именно в вычислениях, поэтому советую аккуратно и подробно их записывать, и ничего не считать «в уме».

=

=

Ответ: 4

Посмотрите небольшую видеолекцию, в которой решены все типы задач на первообразную:


  • Решение задач по математике онлайн

    Этот математический калькулятор онлайн поможет вам вычислить определенный интеграл (площадь криволинейной трапеции). Программа для вычисления определенного интеграла (площади криволинейной трапеции) не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс интегрирования функции.

    Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

    Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

    Читайте также  Как создать группу компаний

    Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
    Правила ввода функций >> Почему решение на английском языке? >>
    С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> Введите подинтегральную функцию и пределы интегрирования Для данной задачи возможно получить подробное решение.
    Узнайте как это сделать.

    Немного теории.

    Определенный интеграл.
    Задачи, приводящие к понятию определенного интеграла

    Задача 1 (о вычислении площади криволинейной трапеции).

    В декартовой прямоугольной системе координат xOy дана фигура (см. рисунок), ограниченная осью х, прямыми х = a, х = b (a ( S_n = f(x_0)Delta x_0 + dots + f(x_k)Delta x_k + dots + f(x_)Delta x_ )
    Здесь ради единообразия обозначений мы считаем, что a = х, b = xn;
    ( Delta x_0 ) — длина отрезка [x; x1],
    ( Delta x_1 ) — длина отрезка [x1; x2], и т.д;
    при этом, как мы условились выше, ( Delta x_0 = dots = Delta x_ )

    Итак, ( S approx S_n ), причем это приближенное равенство тем точнее, чем больше n.
    По определению полагают, что искомая площадь криволинейной трапеции равна пределу последовательности (Sn):
    $$ S = lim_ S_n $$

    Задача 2 (о перемещении точки)
    По прямой движется материальная точка. Зависимость скорости от времени выражается формулой v = v(t). Найти перемещение точки за промежуток времени [а; b].
    Решение. Если бы движение было равномерным, то задача решалась бы очень просто: s = vt, т.е. s = v(b-а). Для неравномерного движения приходится использовать те же идеи, на которых было основано решение предыдущей задачи.
    1) Разделим промежуток времени [а; b] на n равных частей.
    2) Рассмотрим промежуток времени [tk; tk+1] и будем считать, что в этот промежуток времени скорость была постоянной, такой, как в момент времени tk. Итак, мы считаем, что v = v(tk).
    3) Найдем приближенное значение перемещения точки за промежуток времени [tk; tk+1], это приближенное значение обозначим sk
    ( s_k = v(t_k) Delta t_k )
    4) Найдем приближенное значение перемещения s:
    ( s approx S_n ) где
    ( S_n = s_0 + dots + s_ = v(t_0)Delta t_0 + dots + v(t_) Delta t_ )
    5) Искомое перемещение равно пределу последовательности (Sn):
    $$ s = lim_ S_n $$

    Подведем итоги. Решения различных задач свелись к одной и той же математической модели. Многие задачи из различных областей науки и техники приводят в процессе решения к такой же модели. Значит, данную математическую модель надо специально изучить.

    Понятие определенного интеграла

    Дадим математическое описание той модели, которая была построена в трех рассмотренных задачах для функции y = f(x), непрерывной (но необязательно неотрицательной, как это предполагалось в рассмотренных задачах) на отрезке [а; b]:
    1) разбиваем отрезок [а; b] на n равных частей;
    2) составляем сумму $$ S_n = f(x_0)Delta x_0 + f(x_1)Delta x_1 + dots + f(x_)Delta x_ $$
    3) вычисляем $$ lim_ S_n $$

    В курсе математического анализа доказано, что этот предел в случае непрерывной (или кусочно-непрерывной) функции существует. Его называют определенным интегралом от функции y = f(x) по отрезку [а; b] и обозначают так:
    ( intlimits_a^b f(x) dx )
    Числа a и b называют пределами интегрирования (соответственно нижним и верхним).

    Вернемся к рассмотренным выше задачам. Определение площади, данное в задаче 1, теперь можно переписать следующим образом:
    ( S = intlimits_a^b f(x) dx )
    здесь S — площадь криволинейной трапеции, изображенной на рисунке выше. В этом состоит геометрический смысл определенного интеграла.

    Определение перемещения s точки, движущейся по прямой со скоростью v = v(t), за промежуток времени от t = a до t = b, данное в задаче 2, можно переписать так:
    ( S = intlimits_a^b v(t) dt )

    Формула Ньютона — Лейбница

    Для начала ответим на вопрос: какая связь между определенным интегралом и первообразной?

    Ответ можно найти в задаче 2. С одной стороны, перемещение s точки, движущейся по прямой со скоростью v = v(t), за промежуток времени от t = а до t = b и вычисляется по формуле
    ( S = intlimits_a^b v(t) dt )

    С другой стороны, координата движущейся точки есть первообразная для скорости — обозначим ее s(t); значит, перемещение s выражается формулой s = s(b) — s(a). В итоге получаем:
    ( S = intlimits_a^b v(t) dt = s(b)-s(a) )
    где s(t) — первообразная для v(t).

    В курсе математического анализа доказана следующая теорема.
    Теорема. Если функция y = f(x) непрерывна на отрезке [а; b], то справедлива формула
    ( S = intlimits_a^b f(x) dx = F(b)-F(a) )
    где F(x) — первообразная для f(x).

    Приведенную формулу обычно называют формулой Ньютона — Лейбница в честь английского физика Исаака Ньютона (1643—1727) и немецкого философа Готфрида Лейбница (1646— 1716), получивших ее независимо друг от друга и практически одновременно.

    На практике вместо записи F(b) — F(a) используют запись ( left. F(x)right|_a^b ) (ее называют иногда двойной подстановкой) и, соответственно, переписывают формулу Ньютона — Лейбница в таком виде:
    ( S = intlimits_a^b f(x) dx = left. F(x)right|_a^b )

    Вычисляя определенный интеграл, сначала находят первообразную, а затем осуществляют двойную подстановку.

    Опираясь на формулу Ньютона — Лейбница, можно получить два свойства определенного интеграла.

    Свойство 1. Интеграл от суммы функций равен сумме интегралов:
    ( intlimits_a^b (f(x) + g(x))dx = intlimits_a^b f(x)dx + intlimits_a^b g(x)dx )

    Свойство 2. Постоянный множитель можно вынести за знак интеграла:
    ( intlimits_a^b kf(x)dx = k intlimits_a^b f(x)dx )

    Вычисление площадей плоских фигур с помощью определенного интеграла

    С помощью интеграла можно вычислять площади не только криволинейных трапеций, но и плоских фигур более сложного вида, например такого, который представлен на рисунке. Фигура Р ограничена прямыми х = а, х = b и графиками непрерывных функций y = f(x), y = g(x), причем на отрезке [а; b] выполняется неравенство ( g(x) leqslant f(x) ). Чтобы вычислить площадь S такой фигуры, будем действовать следующим образом:
    ( S = S_ = S_ — S_ = intlimits_a^b f(x) dx — intlimits_a^b g(x) dx = )
    ( = intlimits_a^b (f(x)-g(x))dx )

    Итак, площадь S фигуры, ограниченной прямыми х = а, х = b и графиками функций y = f(x), y = g(x), непрерывных на отрезке [a; b] и таких, что для любого x из отрезка [а; b] выполняется неравенство ( g(x) leqslant f(x) ), вычисляется по формуле
    ( S = intlimits_a^b (f(x)-g(x))dx )

    Урок-лекция по теме «Интеграл. Площадь криволинейной трапеции»

    Презентация к уроку

    Ключевые слова: интеграл, криволинейная трапеция, площадь фигур, ограниченных лилиями

    Оборудование: маркерная доска, компьютер, мультимедиа-проектор

    Тип урока: урок-лекция

    Цели урока:

    • воспитательные: формировать культуру умственного труда, создавать для каждого ученика ситуацию успеха, формировать положительную мотивацию к учению; развивать умение говорить и слушать других.
    • развивающие: формирование самостоятельности мышления ученика по применению знаний в различных ситуациях, умения анализировать и делать выводы, развитие логики, развитие умения правильно ставить вопросы и находить на них ответы. Совершенствование формирования вычислительных, расчётных навыков, развитие мышления учащихся в ходе выполнения предложенных заданий, развитие алгоритмической культуры.
    • образовательные: сформировать понятия о криволинейной трапеции, об интеграле, овладеть навыками вычисления площадей плоских фигур

    Метод обучения: объяснительно-иллюстративный.

    В предыдущих классах мы научились вычислять площади фигур, границами которых являются ломаные. В математике существуют методы, позволяющие вычислять площади фигур, ограниченных кривыми. Такие фигуры называются криволинейными трапециями, и вычисляют их площадь с помощью первообразных.

    Криволинейная трапеция (слайд 1)

    Криволинейной трапецией называется фигура, ограниченная графиком функции , (щ.м.), прямыми x = a и x = b и осью абсцисс

    Различные виды криволинейных трапеций (слайд 2)

    Читайте также  Как сделать броню в Майнкрафте

    Рассматриваем различные виды криволинейных трапеций и замечаем: одна из прямых вырождена в точку, роль ограничивающей функции играет прямая

    Площадь криволинейной трапеции (слайд 3)

    Зафиксируем левый конец промежутка а, а правый х будем менять, т. е., мы двигаем правую стенку криволинейной трапеции и получаем меняющуюся фигуру. Площадь переменной криволинейной трапеции, ограниченной графиком функции , является первообразной F для функции f

    И на отрезке [a; b] площадь криволинейной трапеции, образованной функцией f, равна приращению первообразной этой функции:

    S к. т.

    Задание 1:

    Найти площадь криволинейной трапеции, ограниченной графиком функции: f(x) = х 2 и прямыми у = 0, х = 1, х = 2.

    Решение: (по алгоритму слайд 3)

    Начертим график функции и прямые

    Найдём одну из первообразных функции f(x) = х 2 :

    F(x) = ,

    Значит

    Самопроверка по слайду

    Интеграл

    Рассмотрим криволинейную трапецию, заданную функцией f на отрезке [a; b]. Разобьём этот отрезок на несколько частей. Площадь всей трапеции разобьётся на сумму площадей более мелких криволинейных трапеций. (слайд 5). Каждую такую трапецию можно приближённо считать прямоугольником. Сумма площадей этих прямоугольников даёт приближённое представление о всей площади криволинейной трапеции. Чем мельче мы разобьём отрезок [a; b], тем точнее вычислим площадь.

    Запишем эти рассуждения в виде формул.

    Разделим отрезок [a; b] на n частей точками х =а, х1,… ,хn = b. Длину k-го обозначим через хk = xk – xk-1. Составим сумму

    Геометрически эта сумма представляет собой площадь фигуры, заштрихованной на рисунке (щ.м.)

    Суммы вида называются интегральными суммами для функции f. (щ.м.)

    Интегральные суммы дают приближённое значение площади. Точное значение получается при помощи предельного перехода. Представим, что мы измельчаем разбиение отрезка [a; b] так, что длины всех маленьких отрезков стремятся к нулю. Тогда площадь составленной фигуры будет приближаться к площади криволинейной трапеции. Можно сказать, что площадь криволинейной трапеции равна пределу интегральных сумм, Sк.т. (щ.м.) или интегралу, т. е.,

    Интегралом функции f (х) от a до b называется предел интегральных сумм

    = (щ.м.)

    Формула Ньютона- Лейбница.

    Помним, что предел интегральных сумм равен площади криволинейной трапеции, значит можно записать:

    Sк.т. = (щ.м.)

    С другой стороны, площадь криволинейной трапеции вычисляется по формуле

    S к. т. (щ.м.)

    Сравнивая эти формулы, получим:

    = (щ.м.)

    Это равенство называется формулой Ньютона- Лейбница.

    Для удобства вычислений формулу записывают в виде:

    = = (щ.м.)

    1. Вычислить интеграл по формуле Ньютона- Лейбница: (проверяем по слайду 5)

    2. Составить интегралы по чертежу (проверяем по слайду 6)

    3. Найти площадь фигуры, ограниченной линиями: у = х 3 , у = 0, х = 1, х = 2. (Слайд 7)

    Нахождение площадей плоских фигур (слайд 8)

    Как найти площадь фигур, которые не являются криволинейными трапециями?

    Пусть даны две функции, графики которых вы видите на слайде. (щ.м.) Необходимо найти площадь закрашенной фигуры. (щ.м.). Фигура, о которой идёт речь, является криволинейной трапецией? А как можно найти её площадь, пользуясь свойством аддитивности площади? Рассмотреть две криволинейные трапеции и из площади одной из них вычесть площадь другой (щ.м.)

    Составим алгоритм нахождения площади по анимации на слайде:

    1. Построить графики функций
    2. Спроецировать точки пересечения графиков на ось абсцисс
    3. Заштриховать фигуру, полученную при пересечении графиков
    4. Найти криволинейные трапеции, пересечение или объединение которых есть данная фигура.
    5. Вычислить площадь каждой из них
    6. Найти разность или сумму площадей

    Устное задание: Как получить площадь заштрихованной фигуры (рассказать при помощи анимации, слайд 8 и 9)

    Домашнее задание: Проработать конспект, №353 (а), № 364 (а).

    Список литературы

    1. Алгебра и начала анализа: учебник для 9-11 классов вечерней (сменной) школы/ под ред. Г.Д. Глейзера. — М: Просвещение, 1983.
    2. Башмаков М.И. Алгебра и начала анализа: учебное пособие для 10-11 кл.сред.шк./ Башмаков М.И. — М: Просвещение, 1991.
    3. Башмаков М.И. Математика: учебник для учреждений нач. и сред. проф. образования/ М.И. Башмаков. — М: Академия, 2010.
    4. Колмогоров А.Н. Алгебра и начала анализа: учебник для 10-11 кл. общеобразовательных учреждений/ А.Н.Колмогоров. — М: Просвещение, 2010.
    5. Островский С.Л. Как сделать презентацию к уроку?/ C.Л. Островский. – М.: Первое сентября, 2010.

    Вычисление площади фигуры, ограниченной линиями

    Общие сведения

    Вычислить площадь фигуры на плоскости считается довольно простой операцией. Для ее выполнения необходимо знать только формулу. Существенно усложняет задачу фигура, ограниченная прямыми.

    Одной из них считается криволинейная трапеция. Ее площадь можно определить только при нахождении значений определенного интеграла.

    Операция интегрирования считается довольно сложной, поскольку необходимо знать основные правила. Перед нахождением площади криволинейной трапеции специалисты рекомендуют внимательно изучить и освоить правила интегрирования основных функций.

    Разбирается неопределенный интеграл, а затем осуществляется переход к более сложным операциям.

    Информация об интегралах

    С понятием интеграла связано много направлений научных отраслей. Обозначается он символом «∫». С помощью интеграла открываются большие возможности по быстрому и эффективному нахождению значений следующих величин: площади криволинейной трапеции, объема тела вращения, поверхности, пути при неравномерном движении, массы неоднородного физического тела и так далее.

    Упрощенный вариант представления и определения интеграла — сумма бесконечно малых слагаемых. Интеграл бывает нескольких типов: одинарный, двойной, тройной, криволинейный и так далее. Для любого элемента он может быть двух типов:

    1. Неопределенный.
    2. Определенный.

    Операция нахождения первого типа значительно проще второго. Это объясняется тем, что во втором случае следует не только найти первообразную, но и выполнить правильную подстановку значений.

    Неопределенным интегралом функции вида f(х) называется такая первообразная функция F(х), производная которой равна подинтегральному выражению. Записывается это таким образом: ∫(f(x)) = F(х) + С.

    Последняя величина является константой, поскольку при выполнении операции нахождения производной константа равна 0.

    Для нахождения первообразной используется специальная таблица интегралов:

    Рисунок 1. Таблица интегралов и их первообразные.

    В таблице приведены простые функции. Для нахождения площади фигуры, которая ограничена линиями, достаточно значений первообразных на рисунке 1. Вычисление определенного интеграла заключается в получении первообразной и подстановке начального и конечного значений. Следует отметить, что константа при этом не берется. Существует способ, чтобы найти определенный интеграл. Формула Ньютона-Лейбница позволяет быстро и эффективно вычислить площадь фигуры. Для этого нужно подставить значения ее границ (a и b) в первообразные: F(x)|(a;b) = F(b) — F(a).

    Криволинейные фигуры

    Криволинейная фигура (трапеция) — класс плоских фигур, которые ограничены графиком неотрицательной и непрерывной функции, а также осью ОУ и прямыми (х = а, х = b). Она изображена на рисунке 2. Для нахождения ее площади следует использовать определенный интеграл.

    Рисунок 2. Фигуры с криволинейными сторонами.

    Интегрирование разбивает фигуру на прямоугольные части. Длина каждой из них равна ординате y = f(х) через промежутки, которые очень малы, по оси декартовой системы координат (есть еще и полярная) ОХ на отрезке [a;b]. Ширина является бесконечно малым значением. При интегрировании находятся площади прямоугольников и складываются. Для того чтобы не путаться в графиках, геометрическую фигуру следует заштриховать.

    Криволинейная трапеция — геометрическая фигура с неровными сторонами, которые образовались в результате пересечения графика непрерывной функции с осями абсцисс и ординат.

    Применение обыкновенных методов нахождения площади этой фигуры невозможно, поскольку она обладает одной или несколькими неровными сторонами (кривыми линиями).

    Способы вычисления и рекомендации

    Для расчетов площади криволинейной трапеции используется несколько методов. Их условно можно разделить на следующие: автоматизированные и ручные. Первый из них выполняется при помощи специализированного программного обеспечения (ПО). Примером является онлайн-калькулятор, который не только находит площадь заданной фигуры, но и изображает ее в декартовой системе координат.

    Читайте также  Как вымочить почки

    Существует и другое ПО, которое является более «мощным». К нему можно отнести наиболее популярные среды: Maple и Matlab. Однако существует множество программ, написанных на языке программирования Python. Программы нужны также при освоении темы интегрирования. Если необходимо рассчитать множество интегралов и площадей криволинейных фигур, то без них не обойтись.

    Новичку для автоматизированных вычислений рекомендуется применять различные онлайн-калькуляторы. Однако следует выделить неплохую программу, которая обладает довольно неплохими функциональными возможностями.

    Она называется Integral calculator и представляет собой очень удобное приложение для Android-устройств. Кроме того, можно скачать подобное ПО для Linux, Mac и Windows.

    Программа — это калькулятор, который используется для нахождения интегралов и производных, а также его можно применять для решения уравнений интегрального и дифференциального типов. Integral calculator обладает такими функциональными возможностями:

    1. Вычисление производных.
    2. Нахождения первообразных для определенных и неопределенных интегралов.
    3. Решение систем уравнений.
    4. Выполнения операций над матрицами и определителями.
    5. Построение графиков заданных функций в 2D и 3D.
    6. Расчет точек перегиба.
    7. Вычисление рядов Фурье.
    8. Решение дифференциальных уравнений линейного типа первого и второго порядков.

    Однако специалисты не рекомендуют использовать приложения такого типа, поскольку нужно уметь решать подобные задачи самостоятельно. Любые математические операции развивают мышление, а злоупотребление ПО приводит к значительной деградации. Решать какие-либо задачи рекомендуется также людям, которые не имеют отношения к математической сфере.

    Основной алгоритм

    При нахождении площади криволинейной трапеции рекомендуется следовать определенному алгоритму. Он поможет избежать ошибок, поскольку задача разбивается на несколько простых подзадач, решение которых довольно просто контролировать. Алгоритм имеет следующий вид:

    1. Нужно прочитать и понять условие задачи.
    2. Начертить декартовую систему координат.
    3. Построить график заданной функции.
    4. Изобразить линии, ограничивающие фигуру.
    5. После определения границ нужно аккуратно заштриховать фигуру.
    6. Вычислить неопределенный интеграл функции, которая дана в условии.
    7. Посчитать площадь, подставив значения ограничивающих прямых в первообразную.
    8. Проверить решение задачи при помощи программы.

    Первый пункт — внимательное чтение условия задачи. Этап считается очень важным, поскольку формирует дальнейший алгоритм. Необходимо выписать все известные данные, а затем подумать над дальнейшим решением задачи. Следует обратить особое внимание на график функции, который при возможности нужно упростить. Далее следует выписать линии, которые будут ограничивать фигуру.

    Следующий пункт считается наиболее простым, поскольку нужно начертить обыкновенную систему координат. В условии должен быть указан ее тип. Если обозначена полярная система, то следует ее начертить. Во всех остальных случаях изображается декартовая система координат.

    Третий пункт алгоритма — правильное построение графика функции. В этом случае нет необходимости составлять таблицу зависимости значения функции от аргумента. График должен быть схематичным. Например, если это парабола, то нужно ее изобразить. В этом случае необходимо ознакомиться с основными базовыми функциями и их графиками.

    Следующим шагом является правильное изображение прямых. Если ее уравнение имеет следующий вид «x = 5» или что-то подобное, то она будет проходить параллельно оси ОУ. Например, при y = 10 прямая проходит параллельно оси ОХ. В других случаях нужно составить таблицу зависимостей значений уравнения прямой от переменной. Следует брать всего два значения аргумента, поскольку их достаточно для проведения прямой.

    После всех операций образуется фигура, которая ограничена линиями. Ее необходимо заштриховать. После этого вычисляется неопределенный интеграл заданной функции. Необходимо воспользоваться табличными значениями первообразных на рисунке 2. Однако здесь есть небольшой нюанс: константу записывать нет необходимости. Она «уничтожается» при подстановке в формулу Ньютона-Лейбница.

    В полученное значение следует подставить значения границ. Кроме того, необходимо обратить особое внимание на знак формулы. При отрицательном значении границы формула принимает следующий вид: F(x)|(-a;b) = F(b) — F(-a) = F(b) + F(a). Проверка правильности решения выполняется с помощью ПО.

    Примеры решения

    Для закрепления теоретического материала специалисты рекомендуют решить несколько задач. В качестве примера можно взять криволинейные трапеции, изображенные на рисунке 2.

    Разновидность параболы

    В первом примере функция вида y = -x^2 + 2x и ось ОХ образуют фигуру. Необходимо найти ее площадь. Из функции видно, что ветви параболы направлены вниз (отрицательный знак перед квадратом). Точки пересечения находятся следующим образом:

    1. Тело функции приравнивается к 0: -х^2 + 2x = 0.
    2. Выносится общий множитель: -x(x-2) = 0.
    3. Решаются обе части уравнения.
    4. Первый корень: -х1 = 0 или х1 = 0.
    5. Для нахождения второго нужно решить другую часть уравнения: х2-2 = 0. Отсюда, х2 = 2.

    Ветви параболы проходят через координаты по ОХ: 0 и 2 соответственно. Координата «х» вершины точки параболы находится с помощью подстановки в формулу: x = -b/(2*a) = -2 / -2 = 1. В этом случае координата «у» вычисляется следующим образом: y = -(1^2) + 2 * 1 = -1 + 2 = 1. Точка с координатами (1;1) является вершиной параболы. Границы интегрирования — координаты по ОХ, через которые проходят ветви параболы.

    После всех операций следует вычислить неопределенный интеграл функции, воспользовавшись таблицей на рисунке 1: ∫ (-х^2 + 2x) dx = — (x^3 / 3 + x^2) + C = x^2 — x^3 / 3 + C. После этого следует подставить начальное и конечное значения (константа убирается): S = x^2 — x^3 / 3 = (2^2 — 2^3 / 3) — (0^2 — 0^3 / 3) = 4 — 8/3 = 4 / 3 (кв. ед.). Последняя запись является единицей измерения площади. Она обозначается в условных единицах, так как в условии задачи размерность сторон фигуры не указана.

    Гипербола, степенная и прямая

    На следующем рисунке изображен график функции гиперболы (у = 1 / х). Прямые, которые ограничивают график, описываются следующими законами: у1 = -2 и у2 = -1. Для вычисления площади заданной фигуры следует взять интеграл: ∫(1/х) dx = ln (|x|) + С. Для окончательного решения необходимо подставить значения в натуральный логарифм: S = ln (2) — ln (1) = 0,6931 — 0 = 0,6931 (кв. ед.).

    Фигура, которая ограничена прямыми y1 = -1 и y2 = 1, и представлена функцией вида y = 3^x. Площадь находится следующим образом: S = ∫ (3^x) dx = 3^x / (ln(|3|)) = [3^1 / (ln(3))] — [3^(-1) / (ln(3))] = (3 / 1,0986) — ((1/3) / 1,0986) = 2,7307 — 0,3034 = 2,4273 (кв. ед.).

    Последняя фигура представлена графиком прямой y = 0,5х + 1, которую ограничивают прямые х1 = -1 и х2 = 2. Значение площади можно найти таким способом: S = ∫ (0,5х + 1) dx = (0,5 * х^2) / 2 + x = [((0,5 * 2^2) / 2) + 2] — [((0,5 * (-1)^2) / 2) + (-1)] = 3 — 0,75 = 2,25 (кв. ед.).

    Для определения значения площади криволинейной фигуры (трапеции) необходимо использовать определенные интегралы. При решении нужно внимательно следить за знаками и первообразными из таблицы на рисунке 1.

  • Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: