Как найти периметр шестиугольника

Калькулятор периметра шестиугольника

Правильный шестиугольник или гексагон — это многоугольник с шестью равными углами и шестью равными сторонами. Это правильная фигура, которая широко встречается как в природе, так и в человеческой повседневности.

Геометрия шестиугольника

Шестиугольник — фигура на плоскости, ограниченная шестью равными отрезками, которые пересекаются под углом 120 градусов. Изучением многоугольников в целом и гексагона в частности занимался отец геометрии Евклид, который в «Началах» предложил способ построения правильного шестиугольника при помощи циркуля и линейки.

Вокруг любой правильной геометрической фигуры можно описать окружность или вписать ее внутрь. Гексагон не исключение. Сторона фигуры a и радиусы описанной окружности R и вписанной r соотносятся как:

  • R = 2 sin(pi/6) × a = a
  • r = 0,866 a

Главная особенность гексагона состоит в том, что сторона многоугольника и радиус описанной окружности абсолютно равны, так как 2sin(pi/6) = 1.

Примеры шестиугольников

Гексагон — довольно распространенная геометрическая фигура. В человеческой повседневности форму шестиугольника принимают грани таких объектов как гайки, карандаши или детали машин. В природе шестиугольную форму имеют пчелиные соты, снежинки, а также кристаллические решетки некоторых соединений углерода. Кроме того, существует уникальное космическое явление на Сатурне — гигантский гексагон, который представляет собой атмосферный вихрь в виде правильного шестиугольника.

Шестиугольник — эффективная фигура, позволяющая замостить поверхность без пробелов или наложений. Кафель или тротуарная плитка часто принимают форму гексагона, однако наиболее выдающимся примером замощения поверхности шестиугольником является Мостовая гиганта — памятник природы, образованный соединением более 40 000 базальтовых колонн. Шестиугольные колонны Мостовой гиганта образовались в результате древнего извержения вулкана и элегантно замостили поверхность североирландского побережья.

Периметр гексагона

Периметр плоской фигуры — это числовая характеристика, показывающая сумму длин всех его сторон. Гексагон — правильная геометрическая фигура, следовательно, все ее стороны равны. Формула для вычисления периметра шестиугольника предельно проста:

Кроме того, благодаря замечательному свойству шестиугольника, периметр можно вычислить, зная радиус описанной окружности:

Наш калькулятор также использует зависимость между стороной гексагона и радиусом вписанной окружности, поэтому вы можете рассчитать периметр геометрической фигуры, зная только одну из трех переменных на выбор. Кроме того, калькулятор автоматически рассчитает не только периметр, но и остальные атрибуты шестиугольника. Рассмотрим пару примеров.

Примеры из реальной жизни

Снежинка

Снежинка представляет собой снежный или ледяной кристалл в форме правильной шестиугольной пластинки. Естественно, снежинка — слишком мала для того, чтобы мы могли измерить ее натуральный размер и посчитать периметр на онлайн-калькуляторе. Однако включим воображение и представим, что одна сторона снежинки имеет длину, равную 12 условных единиц. Для подсчета периметра такого кристалла нам понадобится просто умножить длину стороны на 6 или ввести значение в форму калькулятора «Сторона». Мы получим ответ:

Также мы узнали, что в нашу воображаемую снежинку мы можем вписать окружность с радиусом r = 10,39.

Школьная задача

В задаче по геометрии требуется найти периметр правильного шестиугольника, зная, что радиус вписанной в него окружности составляет 15 см. Мы знаем, что радиус окружности и сторона гексагона соотносятся как r = 0,866 a и можем вручную подсчитать сначала длину стороны, а затем периметр плоской фигуры. Мы можем сэкономить время и просто указать значение радиуса в ячейке калькулятора «Радиус вписанной окружности r» и получить мгновенный результат:

Заключение

Шестиугольник — эффективная фигура, которая встречается как в природе, так и в человеческой повседневности. Используйте наш онлайн-калькулятор для расчета периметра правильных шестиугольников.

Шестиугольник описанный около окружности построение

Чем он отличается от неправильного?

Во-первых, шестиугольником является фигура с 6 вершинами. Во-вторых, он может быть выпуклым или вогнутым. Первый отличается тем, что четыре вершины лежат по одну сторону от прямой, проведенной через две другие.

В-третьих, правильный шестиугольник характеризуется тем, что все его стороны равны. Причем каждый угол фигуры тоже имеет одинаковое значение. Чтобы определить сумму всех его углов, потребуется воспользоваться формулой: 180º * (n — 2). Здесь n — число вершин фигуры, то есть 6. Простой расчет дает значение в 720º. То есть каждый угол равен 120 градусам.

В повседневной деятельности правильный шестиугольник встречается в снежинке и гайке. Химики видят ее даже в молекуле бензола.

Свойства простые и интересные

Чтобы понять свойства правильного шестиугольника, его имеет смысл разбить на шесть треугольников:

Это поможет в дальнейшем нагляднее отобразить его свойства, главные из которых:

  1. диаметр описанной окружности;
  2. диаметр вписанной окружности;
  3. площадь;
  4. периметр.

Описанная окружность и возможность построения

Вокруг гексагона можно описать окружность, и притом только одну. Поскольку фигура эта правильная, то можно поступить довольно просто: от двух соседних углов провести внутрь биссектрисы. Они пересекутся в точке О, и образуют вместе со стороной между ними треугольник.

Углы между стороной гексагона и биссектрисами будут по 60°, поэтому можно определенно сказать, что треугольник, к примеру, АОВ — равнобедренный. А поскольку третий угол тоже будет равен 60°, то он еще и равносторонний. Отсюда следует, что отрезки ОА и ОВ равны, значит, могут служить радиусом окружности.

После этого можно перейти к следующей стороне, и из угла при точке С тоже вывести биссектрису. Получится очередной равносторонний треугольник, причем сторона АВ будет общей сразу для двух, а ОС — очередным радиусом, через который идет та же окружность. Всего таких треугольников получится шесть, и у них будет общая вершина в точке О. Получается, что описать окружность будет можно, и она всего одна, а ее радиус равен стороне гексагона:

Читать также: Зажим для троса duplex

R=а.

Именно поэтому и возможно построение этой фигуры с помощью циркуля и линейки.

Ну а площадь этой окружности будет стандартная:

S=πR²

Вписанная окружность

Центр описанной окружности совпадет с центром вписанной. Чтобы в этом убедиться, можно провести из точки О перпендикуляры к сторонам шестиугольника. Они будут являться высотами тех треугольников, из которых составлен гексагон. А в равнобедренном треугольнике высота является медианой по отношению к стороне, на которую она опирается. Таким образом, эта высота не что иное, как серединный перпендикуляр, являющийся радиусом вписанной окружности.

Высота равностороннего треугольника вычисляется просто:

h²=а²-(а/2)²= а²3/4, h=а(√3)/2

А поскольку R=a и r=h, то получается, что

r=R(√3)/2.

Таким образом, вписанная окружность проходит через центры сторон правильного шестиугольника.

Ее площадь будет составлять:

S=3πa²/4,

то есть три четверти от описанной.

Периметр и площадь

С периметром все ясно, это сумма длин сторон:

P=6а, или P=6R

А вот площадь будет равна сумме всех шести треугольников, на которые можно разбить гексагон. Поскольку площадь треугольника вычисляется как половина произведения основания на высоту, то:

S=6(а/2)(а(√3)/2)= 6а²(√3)/4=3а²(√3)/2 или

S=3R²(√3)/2

Желающим вычислять эту площадь через радиус вписанной окружности можно сделать и так:

Занимательные построения

В гексагон можно вписать треугольник, стороны которого будут соединять вершины через одну:

Всего их получится два, и их наложение друг на друга даст звезду Давида. Каждый из этих треугольников — равносторонний. В этом нетрудно убедиться. Если посмотреть на сторону АС, то она принадлежит сразу двум треугольникам — ВАС и АЕС. Если в первом из них АВ=ВС, а угол между ними 120°, то каждый из оставшихся будет 30°. Отсюда можно сделать закономерные выводы:

  1. Высота АВС из вершины В будет равна половине стороны шестиугольника, поскольку sin30°=1/2. Желающим убедиться в этом можно посоветовать пересчитать по теореме Пифагора, она здесь подходит как нельзя лучше.
  2. Сторона АС будет равна двум радиусам вписанной окружности, что опять-таки вычисляется по той же теореме. То есть АС=2(a(√3)/2)=а(√3).
  3. Треугольники АВС, СДЕ и АЕF равны по двум сторонам и углу между ними, и отсюда вытекает равенство сторон АС, СЕ и ЕА.

Пересекаясь друг с другом, треугольники образуют новый гексагон, и он тоже правильный. Доказывается это просто:

  1. Угол АВF равен углу ВАС. Таким образом, получившийся треугольник с основанием АВ и безымянной вершиной напротив него — равнобедренный.
  2. Все такие же треугольники, основанием которых служит сторона гексагона, равны по стороне и прилегающей к ней углам.
  3. Треугольники при вершинах гексагона являются равносторонними и равными, что вытекает из предыдущего пункта.
  4. Углы новообразованного шестиугольника равняются 360-120-60-60=120°.

Таким образом, фигура отвечает признакам правильного шестиугольника — у нее шесть равных сторон и углов. Из равенства треугольников при вершинах легко вывести длину стороны нового гексагона:

Читать также: Способы защиты от химической коррозии

d=а(√3)/3

Она же будет радиусом описанной вокруг него окружности. Радиус вписанной будет вдвое меньше стороны большого шестиугольника, что было доказано при рассмотрении треугольника АВС. Его высота составляет как раз половину стороны, следовательно, вторая половина — это радиус вписанной в маленький гексагон окружности:

r₂=а/2

Площадь нового шестиугольника можно посчитать так:

Получается, что площадь гексагона внутри звезды Давида в три раза меньше, чем у большого, в который вписана звезда.

Введенные обозначения

Традиционно сторона правильной геометрической фигуры обозначается латинской буквой «а». Для решения задач требуются еще площадь и периметр, это S и P соответственно. В правильный шестиугольник бывает вписана окружность или описана около него. Тогда вводятся значения для их радиусов. Обозначаются они соответственно буквами r и R.

Читайте также  Как составить судоку

В некоторых формулах фигурируют внутренний угол, полупериметр и апофема (являющаяся перпендикуляром к середине любой стороны из центра многоугольника). Для них используются буквы: α, р, m.

Формулы, которые описывают фигуру

Для расчета радиуса вписанной окружности потребуется такая: r = (a * √3) / 2, причем r = m. То есть такая же формула будет и для апофемы.

Поскольку периметр шестиугольника — это сумма всех сторон, то он определится так: P = 6 * a. С учетом того, что сторона равна радиусу описанной окружности, для периметра существует такая формула правильного шестиугольника: P = 6 * R. Из той, что приведена для радиуса вписанной окружности, выводится зависимость между а и r. Тогда формула принимает такой вид: Р = 4 r * √3.

Для площади правильного шестиугольника может пригодиться такая: S = p * r = (a2 * 3 √3) / 2.

Формулы для правильного многоугольника

Правильный многоуг-к, как и любая другая плоская фигура, имеет площадь (она обозначается буквой S) и периметр (обозначается как Р). Длина стороны многоуг-ка традиционно обозначается буквой an, где n– число сторон у многоуг-ка. Например a4– это сторона квадрата, a6– сторона шестиугольника. Наконец, мы выяснили, что для каждого правильного многоуг-ка можно построить описанную и вписанную окружность. Радиус описанной окружности обозначается большой буквой R, а вписанной – маленькой буквой r.

Оказывается, все эти величины взаимосвязаны друг с другом.

для многоуг-ка, в который вписана окружность. Подходит она и для правильного многоуг-ка.

Для вывода остальных формул правильного многоугольника построим n-угольники соединим две его вершины с центром:

Теперь можно найти и ∠А1ОН1, рассмотрев ∆А1ОН1:

Теперь у нас есть формула, связывающая друг с другом Rи r. Наконец, прямо из определения периметра следует ещё одна формула:

С их помощью, зная только один из параметров правильного n-угольника, легко найти и все остальные параметры (если известно и число n).

Задание. Докажите, что сторона правильного шестиугольника равна радиусу описанной около него окружности.

Решение. Запишем следующую формулу:

Это равенство как раз и надо было доказать в этом задании.

Задание. Около окружности описан квадрат. В свою очередь и около квадрата описана окружность радиусом 4. Найдите длину стороны квадрата и радиус вписанной окружности.

Решение. Запишем формулу:

Задание. Вычислите площадь правильного многоугольника с шестью углами, длина стороны которого составляет единицу.

Найдем периметр шестиугольника:

Задание. Около правильного треугольника описана окружность. В ту же окружность вписан и квадрат. Какова длина стороны этого квадрата, если периметр треугольника составляет 18 см?

Решение. Зная периметр треуг-ка, легко найдем и его сторону:

Далее вычисляется радиус описанной около треугольника окружности:

Задание. Необходимо изготовить болт с шестигранной головкой, причем размер под ключ (так называется расстояние между двумя параллельными гранями головки болта) должен составлять 17 мм. Из прутка какого диаметра может быть изготовлен такой болт, если диаметр прутков измеряется целым числом?

Решение. Здесь надо найти диаметр окружности, описанной около шестиугольника. Ранее мы уже доказывали, что у шестиугольника длина этого радиуса совпадает с длиной его стороны:

Осталось найти сторону шестиугольника. Для этого соединим две его вершины (обозначим их А и С) так, как это показано на рисунке:

Отрезок АС как раз и будет расстоянием между двумя параллельными гранями, что легко доказать. Каждый угол шестиугольника будет составлять 120°:

В частности ∠АВС = 120°. Так как АВ = ВС, то ∆АВС – равнобедренный, и углы при его основании одинаковы:

Аналогично можно показать, что и ∠ACD – прямой. Таким образом, АС перпендикулярен сторонам AF и CD, а значит является расстоянием между ними, и по условию равно 17 мм:

∆АВС – равнобедренный. Опустим в нем высоту НВ, которая одновременно будет и медианой. Тогда АН окажется вдвое короче АС:

AH = AC/2 = 17/2 = 8,5 мм

Теперь сторону АВ можно найти из ∆АВН, являющегося прямоугольным:

Здесь мы округлили ответ до ближайшего большего целого числа, так как по условию можно использовать лишь пруток с целым диаметром.

Как найти периметр шестиугольника

Как знаменито, периметром плоской фигуры именуется длина ограничивающей ее линии. Дабы обнаружить периметр многоугольника довольно сложить длины его сторон. Для этого придется измерить длины всех составляющих его отрезков. Если же многоугольник положительный, то задача нахождения периметра гораздо упрощается.

Вам понадобится

  • – линейка;
  • – циркуль.

Инструкция

1. Дабы обнаружить периметр шестиугольника , измерьте и сложите длины всех его шести сторон. Р = а1+а2+а3+а4+а5+а6,где P – периметр шестиугольника , а а1, а2 … а6 – длины его сторон.Единицы измерения всей из сторон приведите к одному виду – в этом случае довольно будет сложить только числовые значения длин сторон. Единица измерения периметра шестиугольника будет совпадать с единицей измерения сторон.

2. Пример.Имеется шестиугольник с длинами сторон 1 см, 2 мм, 3 мм, 4 мм, 5 мм, 6 мм. Требуется обнаружить его периметр.Решение.1. Единица измерения первой стороны (см) отличается от единиц измерения длин остальных сторон (мм). Следственно, переведите: 1 см = 10 мм.2. 10+2+3+4+5+6=30 (мм).

3. Если шестиугольник положительный, то дабы обнаружить его периметр, умножьте длину его стороны на шесть:Р = а * 6,где а – длина стороны верного шестиугольника .Пример.Обнаружить периметр верного шестиугольника с длиной стороны равной 10 см.Решение: 10 * 6 = 60 (см).

4. Положительный шестиугольник владеет уникальным свойством: радиус описанной вокруг такого шестиугольника окружности равен длине его стороны. Следственно, если знаменит радиус описанной окружности, до воспользуйтесь формулой:P = R * 6,где R – радиус описанной окружности.

5. Пример.Рассчитать периметр положительного шестиугольника , писанного в окружность диаметром 20 см.Решение. Радиус описанной окружности будет равен: 20/2=10 (см).Следственно, периметр шестиугольника : 10 * 6 = 60 (см).

6. Если по условиям задачи задан радиус вписанной окружности, то примените формулу:P = 4 * ?3 * r,где r – радиус вписанной в верный шестиугольник окружности.

7. Если вестима площадь положительного шестиугольника , то для расчета периметра используйте следующее соотношение:S = 3/2 * ?3 * а?,где S – площадь верного шестиугольника . Отсель дозволено обнаружить а = ?(2/3 * S / ?3), следственно:Р = 6 * а = 6 * ?(2/3 * S / ?3) = ?(24 * S / ?3) = ?(8 * ?3 * S) = 2?(2S?3).

Совет 2: Как обнаружить площадь шестиугольника

По определению из планиметрии верным многоугольником именуется рельефный многоугольник, у которого стороны равны между собой и углы так же равны между собой. Положительный шестиугольник является верным многоугольником, с числом сторон равным шести. Существует несколько формул для расчета площади положительного многоугольника.

Инструкция

1. Если знаменит радиус окружности описанной около многоугольника, то его площадь дозволено вычислить по формуле:S = (n/2)•R?•sin(2?/n), где n – число сторон многоугольника, R – радиус описанной окружности, ? = 180?.В верном шестиугольнике все углы равны 120°, следственно формула будет иметь вид:S = ?3 * 3/2 * R?

2. В случае, когда окружность с радиусом r вписана в многоугольник, его площадь вычисляется по формуле:S = n * r? * tg(?/n), где n – число сторон многоугольника, r – радиус вписанной окружности, ? = 180?.Для шестиугольника эта формула принимает вид:S = 2 * ?3 * r?

3. Площадь верного многоугольника так же дозволено вычислить, зная лишь длину его стороны по формуле:S = n/4 * a? * ctg(?/n), n – число сторон многоугольника, a – длина стороны многоугольника, ? = 180?.Соответственно площадь шестиугольника равна:S = ?3 * 3/2 * a?

Совет 3: Как обнаружить периметр фигуры

В задачах по геометрии зачастую требуется обнаружить периметр фигуры . Периметром фигуры именуется длина ограничивающей ее линии. Дозволено, безусловно, легко измерить длину этой линии. Впрочем, итоги таких измерений могут оказаться неудовлетворительно точными. Помимо того, измерение длины косой линии – достаточно-таки сложный процесс. Следственно на практике и при решении геометрических задач обыкновенно применяют особые формулы.

Вам понадобится

  • линейка, циркуль, калькулятор

Инструкция

1. Дабы обнаружить периметр фигуры , ограниченной ломаной линией, сложите длины всех составляющих ее отрезков. Если длины отрезков неведомы, измерьте их с подмогой циркуля и линейки. Если фигура имеет относительно крупные размеры, воспользуйтесь рулеткой. Единицей измерения периметр а будут служить те же единицы, в которых заданы (измерялись) длины составляющих отрезков. Если единицы измерения различные, то их нужно привести к одному виду.Скажем, если земельный участок имеет треугольную форму с длинами сторон 10, 20 и 30 метров, соответственно, то его периметр составит: 10 + 20 + 30 (м).

2. Для нахождения периметр а примитивных геометрических фигур, воспользуйтесь особыми формулами.Дабы обнаружить периметр ромба (в частности, квадрата), умножьте длину его стороны на четыре. То есть, воспользуйтесь следующими формулами:П(ромб) = П(квадрат) = 4 * с,где с – длина стороны ромба (квадрата), П – его периметр .

3. Для нахождения периметр а параллелограмма (в частности, прямоугольника), сложите его длину и ширину и умножьте на два (под длиной и шириной подразумеваются длины 2-х смежных сторон). Нагляднее, это дозволено записать в дальнейшем виде:П(параллелограмм) = П(прямоугольник) = 2 * (д + ш), где:д и ш – длина и ширина параллелограмма (прямоугольника), соответственно.

Читайте также  Как печь в газовой духовке

4. Дабы обнаружить периметр круга, вычислите длину ограничивающей его окружности. Для этого воспользуйтесь классической формулой:П(круг) = ? * Д илиП(круг) = 2 * ? * Р,где: Д – диаметр круга, Р – радиус круга, ? – число «пи», приблизительно равное 3,14.

5. Если знаменита длина диагонали квадрата, то для нахождения его периметр а используйте следующую формулу:П(квадрат) = 2?2 * д,где д – длина диагонали квадрата.

6. Периметр квадрата дозволено рассчитать, применяя информацию о его площади. Для этого воспользуйтесь дальнейшим правилом:П(квадрат) = 4 * ?Sкв,где Sкв – площадь квадрата.

Совет 4: Как обнаружить периметр верного многоугольника

Периметром многоугольника называют замкнутую ломаную линию, составленную из всех его сторон. Нахождение длины этого параметра сводится к суммированию длин сторон. Если все отрезки, образующие периметр такой двухмерной геометрической фигуры, имеют идентичные размеры, многоугольник именуется положительным. В этом случае вычисление периметра гораздо упрощается.

Инструкция

1. В самом простом случае, когда знамениты длина стороны (а) верного многоугольника и число вершин (n) в нем, для вычисления длины периметра (Р) легко перемножьте эти две величины: Р = а*n. Скажем, длина периметра верного шестиугольника со стороной в 15 см должна быть равна 15*6=90 см.

2. Вычислить периметр такого многоугольника по знаменитому радиусу (R) описанной около него окружности тоже допустимо. Для этого придется вначале выразить длину стороны с применением радиуса и числа вершин (n), а после этого умножить полученную величину на число сторон. Дабы рассчитать длину стороны умножьте радиус на синус числа Пи, поделенного на число вершин, а итог удвойте: R*sin(?/n)*2. Если вам комфортнее вычислять тригонометрическую функцию в градусах, замените число Пи на 180°: R*sin(180°/n)*2. Периметр вычислите умножением полученной величины на число вершин: Р = R*sin(?/n)*2*n = R*sin(180°/n)*2*n. Скажем, если шестиугольник вписан в круг с радиусом 50 см, его периметр будет иметь длину 50*sin(180°/6)*2*6 = 50*0,5*12 = 300 см.

3. Схожим методом дозволено посчитать периметр, не зная длины стороны положительного многоугольника , если он описан около окружности с вестимым радиусом (r). В этом случае формула для вычисления размера стороны фигуры будет отличаться от предыдущей лишь задействованной тригонометрической функцией. Замените в формуле синус на тангенс, дабы получить такое выражение: r*tg(?/n)*2. Либо для расчетов в градусах: r*tg(180°/n)*2. Для вычисления периметра увеличьте полученную величину в число раз, равное числу вершин многоугольника : Р = r*tg(?/n)*2*n = r*tg(180°/n)*2*n. Скажем, периметр восьмиугольника, описанного вблизи круга с радиусом в 40 см, будет примерно равен 40*tg(180°/8)*2*8 ? 40*0,414*16 = 264,96 см.

Шестиугольник, виды, свойства и формулы

Шестиугольник, выпуклый и невыпуклый шестиугольник:

Шестиугольник – это многоугольник с шестью углами.

Шестиугольник – это многоугольник, общее количество углов (вершин) которого равно шести.

Шестиугольник может быть выпуклым и невыпуклым.

Выпуклым многоугольником называется многоугольник, все точки которого лежат по одну сторону от любой прямой, проходящей через две его соседние вершины. Невыпуклыми являются все остальные многоугольники.

Соответственно выпуклый шестиугольник – это шестиугольник, у которого все его точки лежат по одну сторону от любой прямой, проходящей через две его соседние вершины.

Рис. 1. Выпуклый шестиугольник

Рис. 2. Невыпуклый шестиугольник

Сумма внутренних углов любого выпуклого шестиугольника равна 720°.



Чем он отличается от неправильного?

Во-первых, шестиугольником является фигура с 6 вершинами. Во-вторых, он может быть выпуклым или вогнутым. Первый отличается тем, что четыре вершины лежат по одну сторону от прямой, проведенной через две другие.

В-третьих, правильный шестиугольник характеризуется тем, что все его стороны равны. Причем каждый угол фигуры тоже имеет одинаковое значение. Чтобы определить сумму всех его углов, потребуется воспользоваться формулой: 180º * (n — 2). Здесь n — число вершин фигуры, то есть 6. Простой расчет дает значение в 720º. То есть каждый угол равен 120 градусам.

В повседневной деятельности правильный шестиугольник встречается в снежинке и гайке. Химики видят ее даже в молекуле бензола.

Правильный шестиугольник (понятие и определение):

Правильный шестиугольник (гексагон) – это правильный многоугольник с шестью сторонами.

В свою очередь правильный многоугольник – это многоугольник, у которого все стороны и углы одинаковые.

Правильный шестиугольник – это шестиугольник, у которого все стороны равны, а все внутренние углы равны 120°.

Рис. 3. Правильный шестиугольник

Правильный шестиугольник имеет 6 сторон, 6 углов и 6 вершин.

Углы правильного шестиугольника образуют шесть равносторонних треугольников.

Правильный шестиугольник можно построить с помощью циркуля и линейки.

Свойства правильного шестиугольника:

1. Все стороны правильного шестиугольника равны между собой.

a1 = a2 = a3 = a4= a5= a6.

2. Все углы равны между собой и составляют 120°.

α1 = α2 = α3 = α4 = α5 = α6 = 120°.

Рис. 4. Правильный шестиугольник

3. Сумма внутренних углов любого правильного шестиугольника равна 720°.

4. Все биссектрисы углов между сторонами равны и проходят через центр правильного шестиугольника O.

Рис. 5. Правильный шестиугольник

5. Количество диагоналей правильного шестиугольника равно 9.

Рис. 6. Правильный шестиугольник

6. Центр вписанной окружности O1 совпадает с центром описанной окружности O2, что и образуют центр многоугольника O.

Рис. 7. Правильный шестиугольник

7. Правильные шестиугольники замощают плоскость (то есть могут заполнять плоскость без пробелов и наложений).

8. Радиус описанной окружности правильного шестиугольника и его сторона равны.

Рис. 8. Правильный шестиугольник

Свойства простые и интересные

Чтобы понять свойства правильного шестиугольника, его имеет смысл разбить на шесть треугольников:

Это поможет в дальнейшем нагляднее отобразить его свойства, главные из которых:

  1. диаметр описанной окружности;
  2. диаметр вписанной окружности;
  3. площадь;
  4. периметр.

Описанная окружность и возможность построения

Вокруг гексагона можно описать окружность, и притом только одну. Поскольку фигура эта правильная, то можно поступить довольно просто: от двух соседних углов провести внутрь биссектрисы. Они пересекутся в точке О, и образуют вместе со стороной между ними треугольник.

Углы между стороной гексагона и биссектрисами будут по 60°, поэтому можно определенно сказать, что треугольник, к примеру, АОВ — равнобедренный. А поскольку третий угол тоже будет равен 60°, то он еще и равносторонний. Отсюда следует, что отрезки ОА и ОВ равны, значит, могут служить радиусом окружности.

После этого можно перейти к следующей стороне, и из угла при точке С тоже вывести биссектрису. Получится очередной равносторонний треугольник, причем сторона АВ будет общей сразу для двух, а ОС — очередным радиусом, через который идет та же окружность. Всего таких треугольников получится шесть, и у них будет общая вершина в точке О. Получается, что описать окружность будет можно, и она всего одна, а ее радиус равен стороне гексагона:

R=а.

Именно поэтому и возможно построение этой фигуры с помощью циркуля и линейки.

Ну а площадь этой окружности будет стандартная:

S=πR²

Вписанная окружность

Центр описанной окружности совпадет с центром вписанной. Чтобы в этом убедиться, можно провести из точки О перпендикуляры к сторонам шестиугольника. Они будут являться высотами тех треугольников, из которых составлен гексагон. А в равнобедренном треугольнике высота является медианой по отношению к стороне, на которую она опирается. Таким образом, эта высота не что иное, как серединный перпендикуляр, являющийся радиусом вписанной окружности.

Высота равностороннего треугольника вычисляется просто:

h²=а²-(а/2)²= а²3/4, h=а(√3)/2

А поскольку R=a и r=h, то получается, что

r=R(√3)/2.

Таким образом, вписанная окружность проходит через центры сторон правильного шестиугольника.

Ее площадь будет составлять:

S=3πa²/4,

то есть три четверти от описанной.

Периметр и площадь

С периметром все ясно, это сумма длин сторон:

P=6а, или P=6R

А вот площадь будет равна сумме всех шести треугольников, на которые можно разбить гексагон. Поскольку площадь треугольника вычисляется как половина произведения основания на высоту, то:

S=6(а/2)(а(√3)/2)= 6а²(√3)/4=3а²(√3)/2 или

S=3R²(√3)/2

Желающим вычислять эту площадь через радиус вписанной окружности можно сделать и так:

Занимательные построения

В гексагон можно вписать треугольник, стороны которого будут соединять вершины через одну:

Всего их получится два, и их наложение друг на друга даст звезду Давида. Каждый из этих треугольников — равносторонний. В этом нетрудно убедиться. Если посмотреть на сторону АС, то она принадлежит сразу двум треугольникам — ВАС и АЕС. Если в первом из них АВ=ВС, а угол между ними 120°, то каждый из оставшихся будет 30°. Отсюда можно сделать закономерные выводы:

  1. Высота АВС из вершины В будет равна половине стороны шестиугольника, поскольку sin30°=1/2. Желающим убедиться в этом можно посоветовать пересчитать по теореме Пифагора, она здесь подходит как нельзя лучше.
  2. Сторона АС будет равна двум радиусам вписанной окружности, что опять-таки вычисляется по той же теореме. То есть АС=2(a(√3)/2)=а(√3).
  3. Треугольники АВС, СДЕ и АЕF равны по двум сторонам и углу между ними, и отсюда вытекает равенство сторон АС, СЕ и ЕА.

Пересекаясь друг с другом, треугольники образуют новый гексагон, и он тоже правильный. Доказывается это просто:

  1. Угол АВF равен углу ВАС. Таким образом, получившийся треугольник с основанием АВ и безымянной вершиной напротив него — равнобедренный.
  2. Все такие же треугольники, основанием которых служит сторона гексагона, равны по стороне и прилегающей к ней углам.
  3. Треугольники при вершинах гексагона являются равносторонними и равными, что вытекает из предыдущего пункта.
  4. Углы новообразованного шестиугольника равняются 360-120-60-60=120°.
Читайте также  Как удалить чернила от шариковой ручки

Правильный шестиугольник в природе, технике и культуре:

Пчелиные соты имеют форму правильного шестиугольника.

Графит, графен имеют гексагональную кристаллическую решетку.

Гигантский гексагон – атмосферное явление на Сатурне – имеет форму правильного шестиугольника.

Рис. 9. Гигантский гексагон на Сатурне

Сечение гайки и многих карандашей имеет вид правильного шестиугольника.

Игровое поле гексагональных шахмат составляют шестиугольники, в отличие от квадратов традиционной шахматной доски.

Панцирь черепахи состоит из шестиугольников.

Гексагоном иногда называют материковую часть Франции, потому что её географические очертания напоминают данную геометрическую фигуру.

Рис. 10. Материковая часть Франции

Формулы правильного шестиугольника:

Пусть a – сторона шестиугольника, r – радиус окружности, вписанной в шестиугольник, R – радиус описанной окружности шестиугольника, P – периметр шестиугольника, S – площадь шестиугольника.

Формулы периметра правильного шестиугольника:

Формулы площади правильного шестиугольника:

Формула радиуса окружности, вписанной в правильный шестиугольник:

Формула радиуса окружности, описанной вокруг правильного шестиугольника:

Правильный шестиугольник

Знаете ли вы, как выглядит правильный шестиугольник? Этот вопрос задан не случайно. Большинство учащихся 11 класса не знают на него ответа.

Правильный шестиугольник — такой, у которого все стороны равны и все углы тоже равны.

Железная гайка. Снежинка. Ячейка сот, в которых живут пчелы. Молекула бензола. Что общего у этих объектов? — То, что все они имеют правильную шестиугольную форму.

Многие школьники теряются, видя задачи на правильный шестиугольник, и считают, что для их решения нужны какие-то особые формулы. Так ли это?

Проведем диагонали правильного шестиугольника. Мы получили шесть равносторонних треугольников.

Мы знаем, что площадь правильного треугольника: .

Тогда площадь правильного шестиугольника — в шесть раз больше.

, где — сторона правильного шестиугольника.

Обратите внимание, что в правильном шестиугольнике расстояние от его центра до любой из вершин одинаково и равно стороне правильного шестиугольник.

Значит, радиус окружности, описанной вокруг правильного шестиугольника, равен его стороне. Радиус окружности, вписанной в правильный шестиугольник, нетрудно найти. Он равен . Теперь вы легко решите любые задачи ЕГЭ, в которых фигурирует правильный шестиугольник.

Ты нашел то, что искал? Поделись с друзьями!

. Найдите радиус окружности, вписанной в правильный шестиугольник со стороной .

Радиус такой окружности равен .

. Чему равна сторона правильного шестиугольника, вписанного в окружность, радиус которой равен 6?

Мы знаем, что сторона правильного шестиугольника равна радиусу описанной вокруг него окружности.

Звоните нам: 8

(бесплатный звонок по России)
+7
(бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

Обучающее видео БЕСПЛАТНО

Техническая поддержка: [email protected] (круглосуточно)

Закажите звонок и получите скидку -50% на первый месяц занятий!

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Правильный шестиугольник

Правильный шестиугольник — выпуклый шестиугольник, у которого все углы равны и все стороны равны.

(blacktriangleright) Каждый угол правильного шестиугольника равен (120^circ) .

(blacktriangleright) Около правильного шестиугольника можно описать окружность: ее радиус равен его стороне.

(blacktriangleright) Большие диагонали правильного шестиугольника делят его на (6) равносторонних треугольников, у которых высота равна радиусу вписанной в правильный шестиугольник окружности.

(blacktriangleright) Центры вписанной и описанной около правильного шестиугольника окружностей есть точка пересечения больших диагоналей этого шестиугольника.

(blacktriangleright) Площадь правильного шестиугольника со стороной (a) равна [S=dfrac<3sqrt3>2a^2]

К окружности, описанной около правильного шестиугольника (ABCDEF) , в точке (A) проведена касательная. Найдите угол между этой касательной и прямой (AD) . Ответ дайте в градусах.

Т.к. центр описанной около правильного шестиугольника окружности есть точка пересечения больших диагоналей, то он лежит на отрезке (AD) , то есть (AD) – диаметр описанной окружности. Т.к. радиус, проведенный в точку касания, перпендикулярен касательной, то угол между касательной и (AD) равен (90^circ) .

Радиус вписанной в правильный шестиугольник окружности равен (sqrt<12>) . Найдите радиус описанной около этого шестиугольника окружности.

По свойству правильного шестиугольника радиус (r) вписанной окружности равен перпендикуляру, проведенному из центра правильного шестиугольника (центр вписанной и описанной окружности) к стороне шестиугольника; причем этот перпендикуляр падает в середину стороны.

Также по свойству правильного шестиугольника радиус описанной окружности равен его стороне (a) . Тогда из прямоугольного треугольника:

[a^2=left(frac a2right)^2+r^2 quad Rightarrow quad a=dfrac 2,r quadRightarrow quad a=dfrac2cdot sqrt<12>=4]

Таким образом, и радиус описанной окружности равен (4) .

Периметр правильного шестиугольника равен (72) . Найдите диаметр описанной окружности.

Если провести все большие диагонали правильного шестиугольника, то они пересекутся в одной точке, которая и будет центром описанной около него окружности (свойство правильного шестиугольника). Рассмотрим чертеж:

Так как угол правильного шестиугольника равен (180^circ(6-2):6=120^circ) , а большие диагонали являются биссектрисами углов, то, например, (angle BAO=angle ABO=60^circ) , следовательно, (triangle ABO) – равносторонний. То есть радиус окружности равен (AO) и равен (AB) . Так как периметр шестиугольника равен (72) , то его сторона равна (72:6=12) . Тогда диаметр описанной окружности равен (2cdot 12=24) .

Найдите радиус окружности, вписанной в правильный шестиугольник со стороной (sqrt3) .

Для любого многоугольника, в который можно вписать окружность, верно (S=pcdot r) , где (p) – полупериметр, а (r) – радиус вписанной окружности.
Площадь правильного шестиугольника со стороной (a) равна (S=dfrac<3sqrt3>2a^2) , полупериметр равен (3a) , тогда [dfrac<3sqrt3>2cdot (sqrt3)^2=3sqrt3cdot rquadRightarrowquad r=1,5]

Найдите сторону правильного шестиугольника, описанного около окружности, радиус которой равен (sqrt3) .

Для любого многоугольника, в который можно вписать окружность, верно (S=pcdot r) , где (p) – полупериметр, а (r) – радиус вписанной окружности.
Площадь правильного шестиугольника со стороной (a) равна (S=dfrac<3sqrt3>2a^2) , полупериметр равен (3a) , тогда [dfrac<3sqrt3>2a^2=3acdot sqrt3quadRightarrowquad a=2]

Площадь правильного шестиугольника равна (24sqrt3) . Найдите длину его большей диагонали.

По свойству правильного шестиугольника большая его диагональ в два раза больше его стороны. Следовательно, если (AB=a) , то (AD=BF=CE=2a) .

Т.к. эти диагонали делят правильный шестиугольник на 6 равносторонних треугольников, причем площадь каждого равна (frac4 a^2) , то площадь всего шестиугольника равна

[S=6cdot dfrac4a^2=24sqrt3 quad Rightarrow quad a=4 quad Rightarrow quad AD=2a=8.]

Около правильного шестиугольника (ABCDEF) описана окружность с центром в точке (O) . Расстояние от точки (O) до одной из его сторон равно (4sqrt<3>) . Найдите радиус этой окружности.

Радиус описанной около правильного шестиугольника окружности равен стороне этого шестиугольника.

(OK) – высота в треугольнике (AOF) , опущенная из (O) . Так как расстояние от точки до прямой – это длина перпендикуляра, опущенного из этой точки на эту прямую, то (OK = 4sqrt<3>) .
Пусть (R) – радиус описанной окружности, тогда (OF = R) , (KF = 0,5R) (так как (OK) ещё и медиана), таким образом, по теореме Пифагора (R^2 = (0,5R)^2 + (4sqrt<3>)^2) , откуда (R = 8) .

Теме «Правильный шестиугольник и его свойства» в ЕГЭ по математике традиционно отводится сразу несколько заданий. Причем в зависимости от условия от учащегося может требоваться как развернутый, так и краткий ответ. Именно поэтому в процессе подготовки к сдаче аттестационного испытания выпускникам непременно стоит научиться решать задачи на применение свойств этой фигуры, в которых необходимо найти ее стороны, диагонали, радиус окружности со вписанным правильным шестиугольником и т. д.

Восполнить пробелы в знаниях, «прокачать» навыки и улучшить собственные знания по данной теме вам поможет образовательный проект «Школково». Наши специалисты подготовили и изложили весь базовый материал для подготовки к ЕГЭ в максимально доступной форме.

Чтобы школьники могли успешно справляться с задачами по данной теме, мы рекомендуем повторить базовые понятия: каковы свойства правильного шестиугольника, описанного около окружности, как вычисляется его площадь, чему равны его углы и т. д. Весь необходимый материал вы найдете в разделе «Теоретическая справка». Он был разработан нашими сотрудники на основе богатого практического опыта.

Для закрепления полученных знаний предлагаем потренироваться в решении соответствующих задач, а также заданий по теме «Параллелограмм в ЕГЭ». Найти их вы сможете в разделе «Каталог». Для каждого упражнения на сайте представлены алгоритм решения и правильный ответ.

Готовиться к ЕГЭ школьники из Москвы и других городов могут в режиме онлайн. В случае необходимости любое упражнение можно сохранить в разделе «Избранное». В дальнейшем к этому заданию можно будет вернуться и, к примеру, обсудить алгоритм его решения с преподавателем.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: