Как найти биссектрису равнобедренного треугольника

Биссектриса треугольника онлайн

С помощю этого онлайн калькулятора можно найти биссектрису треугольника. Для нахождения длины биссектрисы треугольника введите длины сторон треугольника, выберите сторону, к которой проведена биссектриса и нажмите на кнопку «Вычислить». Теоретическую часть смотрите ниже.

Определение 1. Отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны называется биссектрисой треугольника (Рис.1).

Биссектриса треугольника также называют биссектрисей угла треугольника или биссектрисей внутреннего угла треугольника.

Биссектриса внешнего угла треугольника − это биссектриса угла, которая является смежным с внутренним углом треугольника (Рис.2).

Любой треугольник имеет три биссектрисы.

Теорема 1. Биссектрисы треугольника пересекаются в одной точке.

Доказательство. Проведем биссектрисы AA1, BB1 и обозначим через O точку их пересечения (Рис.3). Из точки O проведем перпендикуляры OK, OM и OL по сторонам треугольника ABC. По теореме 1 статьи Биссектриса угла. Свойства − OK=OL OK=OM. Следовательно OL=OM. Но последнее равенство означает, что точка O равноудалена от сторон AC и BC, т.е. находится на биссектрисе CC1 (Определение 2 статьи Биссектриса угла. Свойства).

Точка пересечения биссектрис треугольника называется инцентром треугольника. Инцентр треугольника является центром вписанной в треугольник окружности (Рис.4).

Доказательство следует из теоремы 1, поскольку точка O равноудалена от сторон треугольника ABC и, следовательно, является центром окружности равной OK=OL=OM.

Длина биссектрисы треугольника

Рассмотрим треугольник на Рис.5.

Длина биссектрисы треугольника можно вычислить следующими формулами:

где p − полупериметр треугольника ABC, ( small gamma -) угол между биссектрисой ( small l_c) и вершиной ( small h_c:)

,

Доказательство. 1) Из теоремы Стюарта следует:

(1)

А из теоремы о биссектрисе треугольника следует, что если lc является биссектрисей треугольника ABC (Рис.5), то имеет место следующее соотношение:

(2)

Поскольку то (2) можно переписать так:

(3)

Найдем x из (3):

(4)
(5)

Подставим (4) и (5) в (1):

. (6)
.

Доказательство. 2) Подставим (4) и (5) в (6):

,
. (7)
. (8)

Доказательство. 3) Сделаем следующее обозначение:

. (9)

Сделаем преобразования формулы (7), учитывая (9):

.
. (10)

Доказательство. 4) Для доказательства четвертой формулы, снова обратимся к рисунке Рис.5. Запишем формулы площадей треугольников ABC, ADC и BDC:

,
,
.

Учитывая, что , получим:

.
. (11)

Для ( small sin C ) применим формулу синуса двойного угла:

. (12)

Подставляя (12) в (11) получим:

.
. (13)

Доказательство. 5) Докажем пятую формулу. Из вершины C проведена вершина CH. Имеем прямоугольный треугольник CHD, для которого имеет место следующее равенство:

.
.

Остается показать, что .

Поскольку биссектриса lc делит угол C пополам, то:

Равнобедренный треугольник: свойства, признаки и формулы

О чем эта статья:

Определение равнобедренного треугольника

Определение равнобедренного треугольника звучит проще простого:

Равнобедренным называется треугольник, у которого две стороны равны.

Давайте посмотрим на такой треугольник:

На рисунке хорошо видно, что боковые стороны равны. Это равенство и делает треугольник равнобедренным.

А вот как называются стороны равнобедренного треугольника:

AB и BC — боковые стороны,

AC — основание треугольника.

Чтобы найти основание равнобедренного треугольника, используйте формулу: b = 2a cos

Свойства равнобедренного треугольника

Чтобы понять суть равнобедренного треугольника, нужно думать как равнобедренный треугольник, стать равнобедренным треугольником — и выучить 5 теорем.

Теоремы помогут доказать, что треугольник равнобедренный, а не какой-нибудь ещё. Давайте приступим.

Теорема 1. В равнобедренном треугольнике углы при основании равны.

Мы выяснили, что AС — основание равнобедренного треугольника. Поскольку боковые стороны треугольника равны AB = СB, то и углы при основании — равны. ∠ BАC = ∠ BСA. Изи!

Теорема 2: В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.

Теорема 3: В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

Теорема 4: В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.

Чтобы доказать все эти теоремы, вспомним, что такое биссектриса, медиана и высота.

Биссектриса — луч, который исходит из вершины угла и делит этот угол на два равных угла.

Даже если вы не знаете определения, то про крысу, бегающую по углам и делящую их пополам, наверняка слышали. Она не даст вам забыть, что такое биссектриса. А если вам не очень приятны крысы, то вместо нее бегать может кто угодно. Биссектриса — это киса. Биссектриса — это лИса. Никаких правил для воображения нет. Все правила — для геометрии.

Обратите внимание на рисунок. В представленном равнобедренном треугольнике биссектрисой будет отрезок BH.

Медиана — линия, которая соединяет вершину треугольника с серединой противолежащей стороны.

Для медианы не придумали веселого правила, как с биссектрисой, но можно его придумать. Например, буддийская запоминалка: «Медиана — это Лама, бредущий из вершины треугольника к середине его основания и обратно».

В данном треугольнике медианой является отрезок BH.

Высота треугольника — перпендикуляр, опущенный из вершины треугольника на противоположную сторону.

Высотой в представленном равнобедренном треугольнике является отрезок BH.

Доказательство теорем 2, 3, 4 будет коллективным, поскольку из определений видно, что биссектриса, медиана и высота равнобедренного треугольника — это одно и то же.

А вот и доказательство:

  • Δ ABC
  • Высота BH делит Δ ABC на два прямоугольных треугольника ABH и CBH
  • Δ ABH = Δ CBH, поскольку гипотенузы и катет равны по теореме Пифагора
  • Согласно теореме 1: в треугольниках ABH и BCH ∠ BАH = ∠ BСH, поскольку углы при основании равнобедренного треугольника равны
  • Так как Δ ABC — равнобедренный, то его боковые стороны равны AB = BC
  • AH = CH, поскольку точка H делит основание Δ ABC на две равные части
  • Δ ABH = Δ BCH
  • Значит, отрезок BH одновременно биссектриса, медиана и высота равнобедренного треугольника ABC

Вуаля, сразу три теоремы доказаны.

Теорема 5: Если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны (третий признак равенства треугольников).

Дано два Δ ABC = Δ A1B1C1.

Чтобы доказать равенство треугольников, мысленно наложите один треугольник на другой так, чтобы стороны совпали. Точка A должна совпасть с точкой А1, точка B должна совпасть с точкой B2, точка С — с точкой С1.

Если все стороны совпадают — треугольники равны, а теорема доказана.

Признаки равнобедренного треугольника

Вот несколько нехитрых правил, по которым легко определить, что перед вами не что иное, как его величество равнобедренный треугольник.

Формулы равнобедренного треугольника

Формулы сторон равнобедренного треугольника

b — основание равнобедренного треугольника

a — равные стороны равнобедренного треугольника

α — углы при основании

β — угол, образованный равными сторонами

Формулы длины стороны (основания b) равнобедренного треугольника

Формулы длины равных сторон равнобедренного треугольника (стороны a):

Формулы высоты, медианы, биссектрисы равнобедренного треугольника

b — основание равнобедренного треугольника

a — равные стороны равнобедренного треугольника

α — углы при основании

β — угол, образованный равными сторонами

L — высота, биссектриса и медиана

Формулы высоты, биссектрисы и медианы равнобедренного треугольника, через сторону и угол (L)

Формула высоты, биссектрисы и медианы равнобедренного треугольника, через стороны (L)

Читайте также  Как передавать игры с телефона на компьютер

Примеры решения задач

Нет ничего приятнее, чем поупражняться и поискать градусы и длины в равнобедренном треугольнике. Ну… почти ничего.

Задачка раз. Дан ABC: ∠C = 80∘, AB = BC. Найдите ∠B.

Поскольку вы уже знакомы с пятью теоремами, то для вас не секрет, что углы при основании в равнобедренном треугольнике равны.
∠A = ∠C = 80∘.
Не должно вас удивить и то, что сумма углов треугольника равна 180∘
∠B = 180∘ − 80∘ − 80∘ = 20∘.
∠B = 20∘

Задачка два. В равнобедренном треугольнике один из углов равен 110∘. Найдите наибольший из внешних углов этого треугольника.

Вспоминаем первую теорему о равенстве углов при основании (а лучше не забываем вовсе). Поскольку сумма углов = 180∘, то второго угла в 110∘ в нём быть не может. Соответственно, известный угол в 110∘ — это угол при вершине. (180∘−110∘)/2=35∘. Внешние углы треугольника равны: 180∘−110∘=70∘,180∘−35∘=145∘,180∘−35∘=145∘. Больший внешний угол равен 145∘

Биссектриса равнобедренного треугольника

Определения

Равнобедренный треугольник – это треугольник, две стороны которого равны между собой. Третья сторона зовется основанием, углы при основании равны.

Биссектриса треугольника – это отрезок, который делить угол треугольника на две равные части. Каждая точка биссектрисы равноудалена от каждой из сторон треугольника, т.е. если из любой точки биссектрисы опустить перпендикуляры на каждую из сторон угла, то эти перпендикуляры окажутся равны между собой. Точка пересечения биссектрис является центром вписанной в треугольник окружности и зовется инцентром треугольника.

Рис. 1. Биссектриса

Биссектриса равнобедренного треугольника

Равнобедренный треугольник уникален равенством двух сторон и двух углов. Именно этим обеспечивается основное свойство биссектрисы равнобедренного треугольника: в равнобедренном треугольнике биссектриса, проведенная к основанию, совпадает с высотой и медианой.

В равнобедренном треугольнике только биссектриса, проведенная к основанию, совпадает с высотой и медианой. Две другие биссектрисы будут отличатся от соответствующих медиан и высот, проведенным к этим же сторонам. Это стоит запомнить раз и навсегда, чтобы не допускать нелепых ошибок.

Рис. 2. Биссектрисы в равнобедренном треугольнике

При решении задач, нужно понимать, что это свойство можно применять не только в равнобедренном, но и в равностороннем треугольнике.

Ведь, если выбрать любую из сторон равностороннего треугольника и принять ее за основание, то две другие стороны будут равны, а, значит, равносторонний треугольник может считаться равнобедренным треугольником, у которого любая сторона может выступать в роли основания.

А раз любую сторону можно принимать за основание, то и каждая биссектриса будет совпадать с каждой соответствующей медианой и высотой. Ведь каждая биссектриса будет проведена к стороне, которую можно считать основанием.

Именно на этом свойстве основано равенство двух треугольников, которые получаются в равнобедренном треугольнике в результате проведения биссектрисы. Ведь в таких треугольниках одна сторона, та самая биссектриса, будет общей.

Рис. 3. Равнобедренный тупоугольный треугольник

Биссектриса совпадает с высотой, а, значит, два малых треугольника будут прямоугольными, а биссектриса дает два равных угла. То есть, два треугольника будут равны по катету и прилежащему острому углу, что соответствует одному из признаков равенства прямоугольных треугольников.

Использование двух малых треугольников часто встречается на практике. Например, если известны основание треугольника и его боковая сторона, а нужно найти биссектрису, сделать это можно гораздо проще, нежели в других треугольниках.

Биссектриса совпадает с медианой и высотой, а, значит, станет катетом малого прямоугольного треугольника, тогда значение биссектрисы можно найти как значение катета через теорему Пифагора.

Что мы узнали?

Мы вспомнили, что такое равнобедренный треугольник. Поговорили о свойствах биссектрисы равнобедренного треугольника, отдельно выделили свойства биссектрис равностороннего треугольника. Отметили наиболее применяемый и простой способ нахождения биссектрисы равнобедренного треугольника.

Вычисление биссектрисы треугольника с известными свойствами

Математика, как известно, царица наук. Неслучайно это выражение так любят учителя, особенно старой формации. Математика открывается исключительно тем, кто умеет, во-первых, логически мыслить, а во-вторых, тем, кто любит всегда добиваться ответа, оперируя изначальными условиями, не жульничая, а основывая решения на анализе, построение опять-таки логических связей. Эти качества, вынесенные со школьной скамьи, способны модулироваться и к взрослой серьезной жизни как в рабочих, так и в иных сложных моментах.

  • Свойства
  • Свойства в равнобедренных треугольниках
  • Определение биссектрисы треугольника
  • Определение длины
  • Нахождение величины угла

Сегодня многие сталкиваются с проблемами при решении математических задач еще в начальной школе.

Однако даже те школьники, которые успешно осваивают первичную математическую программу, переходя на новый школьный и жизненный этап, где алгебра отделяется от геометрии, бывает, сталкиваются с серьезными затруднениями. Между тем, один раз выучив и, главное, поняв, как найти биссектрису треугольника, ученик навсегда запомнит эту формулу. Рассмотрим треугольник ABC с тремя проведенными биссектрисами. Как видно из рисунка, все они сходятся в одной точке.

Во-первых, определим, что биссектриса треугольника, и это одно из важнейших ее свойств, делит угол, из которого такой отрезок исходит, пополам. То есть в приведенном примере угол BAD равен углу DAC.

Это интересно: Как найти периметр треугольника.

  1. Свойства
  2. Свойства в равнобедренных треугольниках
  3. Определение биссектрисы треугольника
  4. Определение длины
  5. Нахождение величины угла

Свойства

  1. Биссектриса треугольника разделяет сторону, к которой она проведена на два отрезка, обладающие свойствами пропорциональности к сторонам, которые прилегают к каждому отрезку, соответственно. Таким образом, BD/CD = AB/AC.
  2. Каждый треугольник способен обладать тремя данными отрезками. Другие значимые свойства касаются как частных, так и общих случаев конкретных рассматриваемых треугольников.

Свойства в равнобедренных треугольниках

  1. Первое свойство биссектрис равнобедренного треугольника формулируется в том, что равенство двух биссектрис свидетельствует о равнобедренности этого треугольника. Третья же его биссектриса медиана, а также высота его угла.
  2. Разумеется, что будет верным и обратное свойство. То есть в равнобедренном треугольнике неизменно наблюдается равенство двух его биссектрис.
  3. Из сказанного ранее вытекает вывод о том, что биссектриса, исходящая из противоположного основанию, служит также медианой и высотой.
  4. Все биссектрисы равностороннего треугольника обладают равенством.

Определение биссектрисы треугольника

Допустим, что в рассматриваемом треугольнике ABC сторона AB = 5 cm, AC = 4 cm. Отрезок CD = 3 cm.

Определение длины

Определить длину можно по следующей формуле. AD = квадратный корень из разности произведения сторон и произведения пропорциональный отрезков.

Найдем длину стороны BC.

  • Из свойств известно, что BD/CD = AB/AC.
  • Значит, BD/CD = 5/4 = 1,25.
  • BD/3 = 5/4.
  • Значит, BD = 3,75.
  • ABxAC = 54=20.
  • CDxBD = 33,75 = 11,25.

Так, для того чтобы рассчитать длину, требуется вычесть из 20 11,25 и извлечь квадратный корень из получившегося 8,75. Результат с учетом тысячных долей получится 2,958.

Данный пример призван также эксплицитно указать на ситуацию, когда значения длины биссектрисы, как и все другие значения в математике, будут выражены не в натуральных числах, однако бояться этого не стоит.

Это интересно: в чем выражается эволюционный характер развития общества?

Нахождение величины угла

Для нахождения углов, образующихся биссектрисой, важно, прежде всего, помнить о сумме углов, неизменно составляющей 180 градусов. Предположим, что угол ABC равен 70 градусам, а угол BCA 50 градусам. Значит, путем простейших вычислений получим, что CAB = 180 (70+50) = 60 градусов.

Читайте также  Как поменять картридж на Canon Pixma

Если использовать главное свойство, в соответствии с которым угол, из которого она исходит, делится пополам, получим равные значения углов BAD и CAD, каждый из которых будет 60/2 = 30 градусов.

Если требуется дополнительный наглядный пример, рассмотрим ситуацию, когда известен лишь угол BAD равный 28 градусам, а также угол ABC равный 70 градусам. Используя свойство биссектрисы, сразу найдем угол CAB путем умножения значения угла BAD на два. CAB = 282 =56. Значит, BAC = 180 (70+56) или 180 (70+282)= 180 126 = 54 градуса.

Специально не рассматривалась ситуация, когда данный отрезок выступает в качестве медианы или высоты, оставив для этого другие специализированные статьи.

Таким образом, мы рассмотрели такое понятие, как биссектриса треугольника, формула для нахождения длины и углов которой заложена и реализована в приведенных примерах, имеющих целью наглядно показать, каким образом можно использовать для решения тех или иных задач в геометрии. Также к данной теме относятся такие понятия, как медиана и высота. Если данный вопрос прояснился, следует обращаться к дальнейшему изучению различных других свойств треугольника, без которых немыслимо дальнейшее изучение геометрии.

Биссектриса треугольника

Формулы для вычисления длины биссектрисы треугольника

Формулы для вычисления длины биссектрисы треугольника

Можно вывести различные формулы, с помощью которых можно вычислить длину биссектрисы треугольника, если известны:

· длины прилежащих сторон и угол между ними

· длины прилежащих сторон и отрезки, на которые биссектриса разбивает противолежащую сторону

· длины трех сторон треугольника.

Докажем первую из формул.

Задача 1. Вычислить длину биссектрисы треугольника, если известны длинны двух прилежащих сторон треугольника и угол между ними.

Решение. Пусть в треугольнике АВС известно, что

.

Обозначим биссектрису AD через la .

Требуется найти la.

.

Используя формулу синуса двойного угла, получаем:

.

Ответ: .

Выражение называется средним гармоническим чисел а и с. Поэтому формулу можно запомнить следующим образом:

биссектриса треугольника равна произведению среднего гармонического прилежащих сторон треугольника на косинус половинного угла между ними.

Доказательство остальных формул можно посмотреть, например, в методическом пособии «Опорные задачи по планиметрии».

Задача 2. Вычислите биссектрису треугольника ABC, проведённую из вершины А, если ВС = 18, АС = 15, АВ = 12.

Решение. Воспользуемся формулой для вычисления биссектрисы угла, если известны три стороны треугольника:

Задача 3. Определить площадь треугольника, если две его стороны равны 35 см и 14 см, а биссектриса угла между ними содержит 12 см.

Пусть в треугольнике АВС АС=35, АВ=14, AD — биссектриса, AD=12.

,

Вычислим , получаем:

, .

(по основному тригонометрическому тождеству).

Далее по формуле синуса двойного угла вычисляем

.

Для вычисления площади треугольника воспользуемся формулой .

Задача 4. . В равнобедренном треугольнике BCD с основанием BD

проведена биссектриса BE. Известно, что СЕ = 20 и DE = 10. Найдите BE.

Используя свойство биссектрисы угла треугольника (урок 4), получаем

, то есть .

Таким образом, нам известны длины двух прилежащих сторон и отрезки, на которые биссектриса разбивает противолежащую сторону, поэтому

Ответ :.

Задачи для самостоятельного решения

1. Дан треугольник со сторонами 4, 8, 9. Найти длину биссектрисы, проведенной к большей стороне.

2. В треугольнике ABC известно, что АВ = 10, АС = 15, BAC = 120°. Найдите биссектрису AD.

3. Катеты прямоугольного треугольника равны 6 и 8. Найдите биссектрису треугольника, проведённую из вершины прямого угла.

4. В равнобедренном треугольнике BCD с основанием BD проведена биссектриса BE. Известно, что СЕ = 18 и DE = 12. Найдите BE.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: